

November 2025

London Life Sciences Companies to Watch 2025

Spotlighting pioneers shaping the future of life sciences

MEDCITY
LONDON

LONDON
& PARTNERS

Contents

3 Foreword

6 Acknowledgements

7 Executive summary

8 Introduction

9 Methodology

10 Life Sciences Companies to Watch Landscape

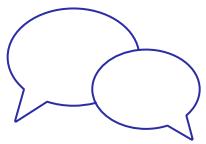
13 London Life Sciences Companies To Watch 2025: Full List

15 Fast-growing companies

26 Groundbreaking tech: AI and digital

37 Groundbreaking tech: modalities and medtech

49 Strong founding teams


60 Challenging indications

70 Companies founded in London and growing across the UK

81 Summary

82 References

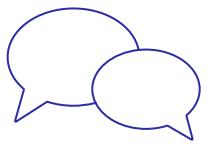
Foreword

The UK's life sciences sector is one of our greatest national assets; a foundation for economic growth, providing good jobs, global influence, and better health outcomes. The Government's Life Sciences Sector Plan and Modern Industrial Strategy reaffirm this, setting an ambition for the UK to become the world's third most important life sciences economy by 2035. Achieving that vision depends on supporting the innovators and scale-ups who translate our world-class research into real-world impact, and the MedCity Life Sciences Ones to Watch brochure highlights a wealth of such companies.

The London Growth Plan sets out a mission-driven blueprint for sustainable, inclusive growth — placing life sciences, advanced technology, and frontier innovation growth at the heart of London's future economy. Its priorities are designed to make London more productive, connected, and globally competitive, while ensuring that opportunity and prosperity are shared across communities.

Through this plan, the Mayor of London and partners are:

- **Building world-leading innovation districts** – expanding life sciences clusters such as the WestTech Corridor (White City, Paddington, South Kensington and Park Royal) and the London Cancer Hub in Sutton, to create dynamic places where researchers, clinicians, startups and investors collaborate.
- **Backing high-growth businesses and SMEs** – introducing a pan-London business support service to help innovative companies scale, access finance, and expand globally, with life sciences identified as a core priority sector.
- **Developing an inclusive and skilled workforce** – delivering an Inclusive Talent Strategy to connect Londoners to high-value jobs in innovation, research, and health technology, with a focus on diversity, good work and progression.
- **Driving green and globally competitive growth** – embedding sustainability and net zero goals across all sectors, and positioning London as a world capital for services, science and digital exports.


The companies highlighted in London Life Sciences Companies to Watch reflect the kind of innovation and ambition these measures are designed to empower. They are pioneers across diagnostics, AI, therapeutics, and research and development, and their growth mirrors the strategic priorities set out in the UK's Industrial Strategy and **10-Year Health Plan**, and the **London Growth Plan**, which together place innovation, prevention, and digital transformation at the centre of the UK's health and economic future.

MedCity's work in identifying and championing these companies provides a valuable bridge between national strategy and on-the-ground innovation. By showcasing the entrepreneurs, scientists, and technologies shaping London's next generation of life sciences success stories, this report captures the spirit of what the Mayor of London aims to nurture: a vibrant, globally connected ecosystem where discovery becomes delivery, and innovation translates into impact for patients and society.

Howard Dawber OBE
Deputy Mayor of London for
Business and Growth

Foreword

As the UK's capital and a global financial powerhouse, London offers ambitious companies the right conditions to scale, with access to major research hospitals, connections to global markets, and proximity to policymakers and regulators. It's a city where ideas are accelerated by a culture of collaboration across disciplines, borders and sectors. The 'London Life Sciences Companies to Watch' brochure highlights high-potential companies founded or growing in London, who are driving future innovations in life sciences and healthcare.

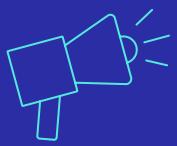
No other life sciences hub unites such diverse strengths. Ranked third globally in **MedCity's 2024 Life Sciences Global Cities Comparison** [1], London continues to stand at the frontier of health innovation. In the first half of 2025 alone, life sciences companies based in the capital raised **£1.19bn** [2], contributing to a sector generating more than £11.6bn in turnover each year [3].

This success builds on centuries of pioneering science. From Hooke's discovery of the **cell**, to Fleming's **penicillin** breakthrough at Imperial's St Mary's Hospital, to the first image of **DNA** at King's College London, London has shaped the modern understanding of biomedical science [4]. Today, London's scientists are pushing boundaries once again: leading on CRISPR genome editing in human embryos [5], AI protein prediction through DeepMind's AlphaFold, and cutting-edge cell therapies harnessing novel cell types such as gamma delta T cells and neutrophils [4].

London's edge goes beyond scientific excellence. Its combination of scientific **rigour**, access to **capital** and exceptional **talent** creates the ideal environment for high-growth life sciences companies to thrive.

Take GammaDelta Therapeutics, founded by scientists at the Crick and King's College in 2016 and acquired by Takeda in 2021 [6], or Autolus, spun out from UCL, which debuted a **\$350m IPO** and gained FDA approval for its CAR T therapy in 2024 [7]. The 2025 investment dialogue has been dominated by mega rounds with London's Isomorphic Labs and Verdiva Bio receiving **£449m** and **£327m** respectively, which drove a **record-breaking** Q1 in UK life sciences venture capital deployment [8]. These are just a selection of many success stories powered by London's unique ecosystem.

In 2025, the NHS published a new **10 Year Health Plan for England**, which highlights three big shifts in how the NHS will work moving forward. There will be a focus on moving from **hospital to community** settings, from **analogue to digital**, and from **sickness to prevention** [9]. These three principles will put digital technologies in healthcare at the heart of the NHS, so it's encouraging to see a high proportion of the companies highlighted in this brochure with AI and digital technologies at their core, alongside many companies advancing diagnostics and personalised medicine.


Looking ahead, the **UK government's Life Sciences Sector Plan** sets an ambitious target: to be the world's third largest life sciences economy by 2035 [10]. London is supported by the London Growth Plan, which highlights the importance of business support services, inclusive talent and skills strategy, inward investment and promotion, and facilitating international investment into UK businesses. As AI, quantum computing and next-gen biologics converge, London is positioned to supercharge UK life sciences innovation.

It is fitting, then, to see such an impressive list of companies featured in the very first **London Life Sciences Companies to Watch brochure**. These companies have been identified through a combination of quantitative research, pipeline review and expert opinion, and selected for the quality of their science, founding teams, medical need addressed and growth metrics. They exemplify London's excellence and global leadership in life sciences, and are positioned to be the vanguard of future healthcare and research.

Dr Angela Kukula
CEO, MedCity

About

London & Partners

londonandpartners.com

London & Partners is the growth agency for London. Our mission is to create economic growth that is resilient, sustainable and inclusive. We are funded by grants, partners and our portfolio of venture businesses.

MedCity

medcity.london

The MedCity team is a unifying voice for life sciences in London. We amplify London's strengths, provide information and resources to businesses and entrepreneurs, and support the ecosystem to grow in London.

If you would like to know more about what we do and how we work, please contact us or send us a message at medcitycomms@londonandpartners.com.

“The life sciences sector continues to grow from strength to strength in London, and it is a pleasure to be a part of it and particularly the MedCity community, where I have met some incredibly talented and innovative companies and people.”

Esmé Swindells
Partner, Potter Clarkson

Acknowledgements

MedCity gratefully acknowledges the expert advisors who contributed their time and insight to the nomination and voting process. Their evaluations and perspectives were instrumental in shaping the final shortlist, ensuring they reflect both the strength of innovation and the growth potential within London's life sciences ecosystem. The following advisors are recognised for their valuable contributions:

Alessia Errico

Associate Director, Search and Evaluation, and
Entrepreneurial Programmes Lead
Cancer Research Horizons

Paul Gershlick

Partner
VWV Law

Andrew Tingey

Director Licencing and IP Transactions
Symbiosis IP

Ravi Chana

Executive Director, Diagnostics at ABHI
(Association of British Healthtech Industries)

Esmé Swindells

Partner
Potter Clarkson

Robert Mollen

Co-Lead, Global Tech Advocates HealthTech
Fried Frank

Michael Kyriakides

Principal
Syncona

Stephen Wilkinson

Business Development Manager
Richmond Pharmacology

London has been instrumental to Relation's growth, our strategy is built on the belief that where and how we work shapes what we can achieve, and London offers an innovation ecosystem unlike anywhere else, world-class hospitals and universities, exceptional scientific, computational and engineering talent, ambitious investors, and a collaborative community that enables ideas to scale. It is a city where the UK's spirit of innovation endures, now leading not just an industrial revolution but an AI-powered biological one.

As one of the few homegrown TechBio companies, we've chosen to deepen our commitment here in the centre of London. Our interdisciplinary teams, biologists, engineers, machine learning scientists and drug developers, work side by side in our Lab-in-the-Loop to turn complex data into medicines. This integration of AI and experimental science accelerates discovery and strengthens our confidence in biology. As we expand in London, we're not just growing our footprint; we're strengthening our ability to deliver transformational medicines for patients.

66

Rosie Rodriguez

Senior Vice President Growth, Relation Therapeutics

Executive summary

The London's Life Sciences Companies to Watch brochure highlights high-potential companies in London's life sciences ecosystem. 60 companies are featured across six categories:

Fast-growing companies

Companies demonstrating exceptional momentum through funding raised, headcount growth, partnership activity, or presence on high growth lists.

Groundbreaking tech: AI and digital

Companies developing transformative technologies with the potential to disrupt current approaches to research, diagnosis or treatment. This could include platform biotechnologies, AI models, novel delivery systems or synthetic biology tools.

Groundbreaking tech: modalities and medtech

Companies developing transformative therapies with novel technologies and modalities. This could include novel cell types, combination technologies, or engineering approaches.

Strong founding teams

Founders who bring scientific, clinical or entrepreneurial excellence including serial entrepreneurs, academic leaders, diversity of founding team or those with outstanding technical expertise.

Challenging indications

Companies tackling high-burden or underserved disease areas, including oncology, neurodegeneration, rare diseases or antimicrobial resistance, with compelling scientific or clinical strategies.

Founded in London and growing across the UK

Companies founded in London that are now expanding nationally.

Companies were selected by consultation with London's universities and sector experts, and quantitative selection through data platforms, as outlined in the methodology. An expert panel was assembled to refine a longlist of 120 companies to the final 60 featured here.

Key findings include:

- Most companies on the list are located in the **Knowledge Quarter** and **White City**.
- The largest proportion are developing **therapeutics**.
- **56%** are university or company spinouts.
- The most frequent technologies in development were in research and development platforms, and gene therapy, followed by diagnostics.
- Companies on this list that were founded after 2015 have raised significantly more than those founded before 2015, with **record-breaking investment in 2025**.

The companies featured in this brochure demonstrate the breadth, depth and innovation of scientific research and development in London, which will address some of the biggest future health and research challenges.

Introduction

London brings together world-leading research, a unique concentration of specialist hospitals, a thriving commercial ecosystem and a deep pool of exceptional talent, making it Europe's premier destination for life sciences innovation.

This brochure, developed for life sciences professionals, showcases examples of exciting companies in London, alongside success stories of companies who started in London and developed their companies elsewhere in the UK. We feature a snapshot of the emerging stars across biotech, medtech, healthtech and beyond, which reflect the energy, talent and transformative potential of London's life sciences sector.

“At the heart of London’s thriving life sciences ecosystem is a shared commitment to improving patient outcomes. The discoveries being made here have the potential to transform healthcare globally, and it’s a privilege to contribute to that story.”

Stephen Wilkinson
Business Development Manager
Richmond Pharmacology

Methodology

This showcase is not a ranking. Instead, it highlights a selection of companies in London's life sciences sector that demonstrate bold innovation, scientific excellence and strong growth potential.

The longlist was developed through a combination of data analysis (Dealroom, Beauhurst, GlobalData), consultation with universities, accelerators and founders, and insights from across the London ecosystem. The final companies were selected through expert review by MedCity's Advisory Board and sector specialists.

Companies have been displayed in alphabetical order within the categories for which they were nominated. All companies have been contacted to notify them of their inclusion in this report. Companies with an asterisk (*) next to their name have not shared direct feedback or revisions on their descriptions, and this information has been sourced from their websites and press releases.

Companies were selected across six categories:

1. Fast-growing companies

Companies demonstrating exceptional momentum through funding raised, headcount growth, partnership activity or presence on high-growth lists.

- Sourced from Dealroom, Beauhurst and Companies House filings (data accessed August 2025).
- Growth assessed using multiple metrics (annual growth in headcount, consistency of fundraising).
- Weighting given to companies with presence on high-growth lists such as 20% scaleup in a year, or earlier stage with exceptionally high fund raisings.

2. Groundbreaking technologies: AI and digital and

3. Groundbreaking technologies: modalities and medtech

Companies developing transformative technologies with the potential to disrupt current approaches to research, diagnosis or treatment. This could include platform biotechnologies, AI models, novel delivery systems or synthetic biology tools.

- Identified via patents held and competitor landscape review in GlobalData and Dealroom.
- Input from universities on standout IP-based spinouts.
- Expert advisors selected 10 based on uniqueness, scalability and translational potential.

4. Strong founding teams

Founders who bring scientific, clinical or entrepreneurial excellence including serial entrepreneurs, academic leaders, diversity of founding team or those with outstanding technical expertise.

- Profiles gathered from company websites, LinkedIn and university affiliations.

- Dealroom individual profiles searched to identify serial founders or founders tagged as 'exceptional founders' (data accessed August 2025).

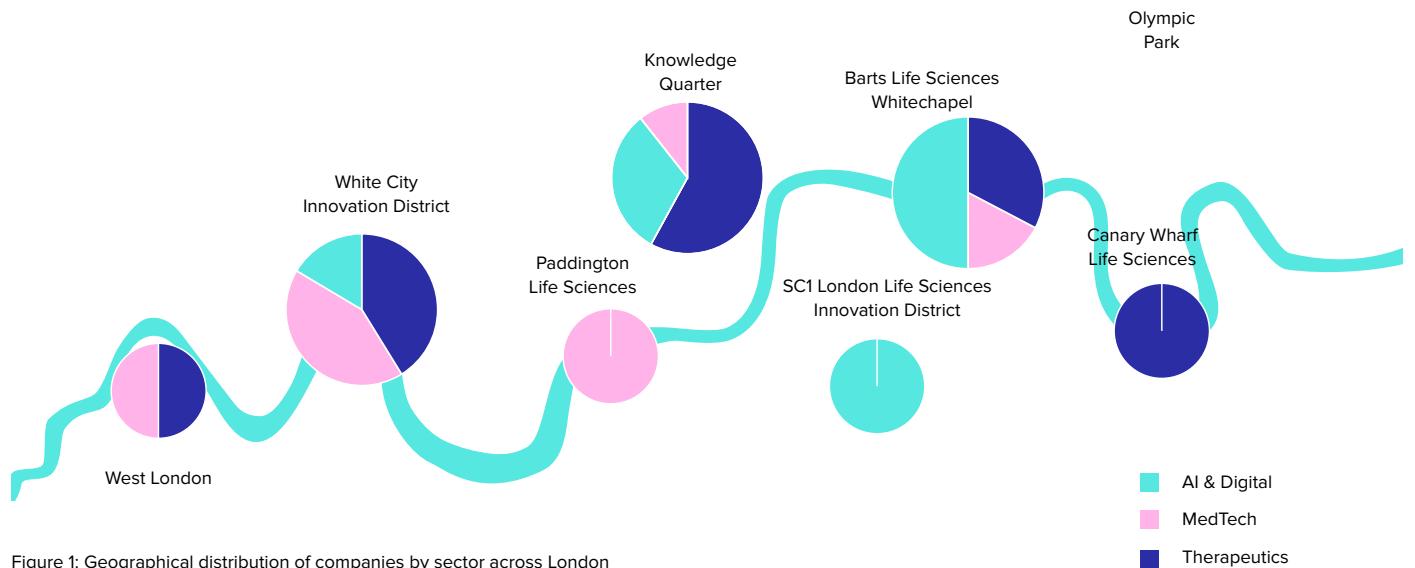
- Included recommendations from universities, accelerators and incubators.
- Advisors prioritised founding teams based on track record (exits, publications, patents), team composition and diversity of background.

5. Challenging indications

Companies tackling high-burden or underserved disease areas, including oncology, neurodegeneration, rare diseases or antimicrobial resistance, with compelling scientific or clinical strategies.

- Filtered for companies with lead assets in priority indications and with priority review status, via GlobalData pipeline analysis (data accessed August 2025).
- Advisors prioritised companies with challenging disease focus and clinical trial overview.

6. Founded in London and growing across the UK


Companies founded in London that are now expanding nationally.

- Filtered for London-founded and now located elsewhere in the UK (data accessed August 2025).
- Prioritised companies contributing to regional innovation or creating skilled jobs across the UK, as well as fundraising and high-growth list presence.

This approach reflects MedCity's commitment to showcasing the breadth and depth of innovation across London, not by size or valuation, but by the potential to transform health outcomes.

Life Sciences Companies to Watch landscape

Locations of 'Ones to Watch' Companies in London

Most companies are in the Knowledge Quarter, then in White City, then Whitechapel. Knowledge Quarter has mostly therapeutics companies, while White City has primarily medtech and Whitechapel are primarily AI and digital-focussed (figure 1).

Distribution of Companies by Subsector and Technology

Therapeutics companies are mostly developing gene therapies, then peptides, small molecules and cell therapies.

Nine of the 14 AI and digital companies in this brochure are working on platforms to boost research and development with AI. Other technologies included nutrition, diagnostics and contract research services.

Six of the 13 medtech companies listed were working on diagnostic applications, while others included manufacturing, surgical and research and development platforms (figure 2).

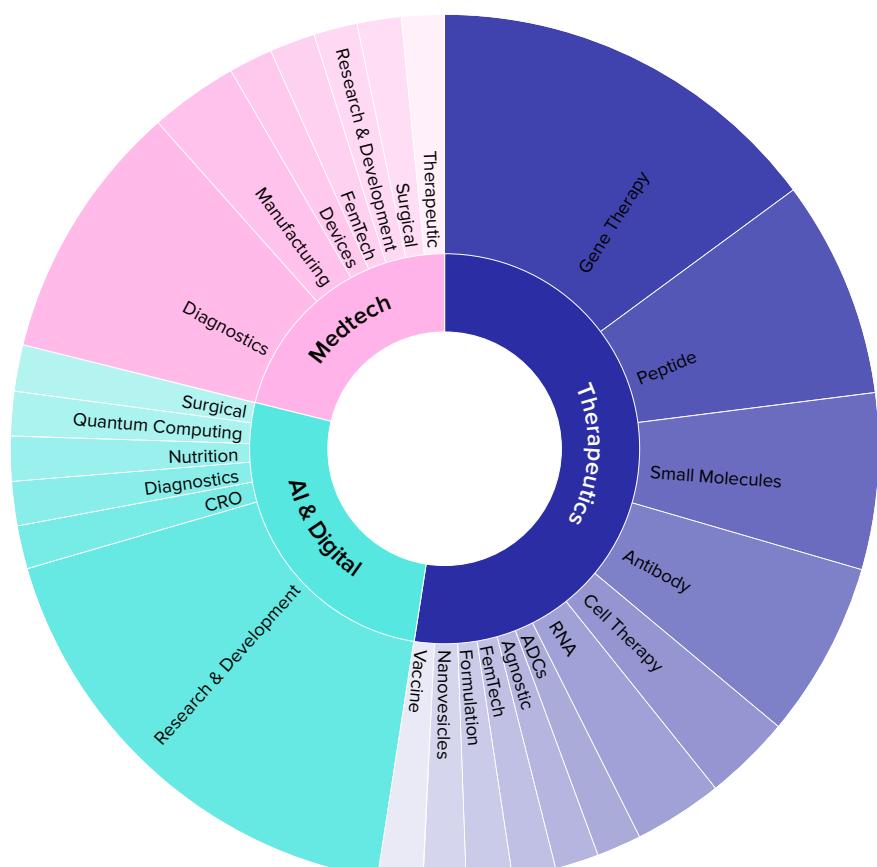


Figure 2: Company landscape by subsector and technology

Life Sciences Companies to Watch landscape

Distribution of Spin Outs from Universities and Independent Start Ups

There were **53%** university or company spinouts, and **47%** independent startups (figure 3). Most startups are from UCL, followed by Imperial and King's College London.

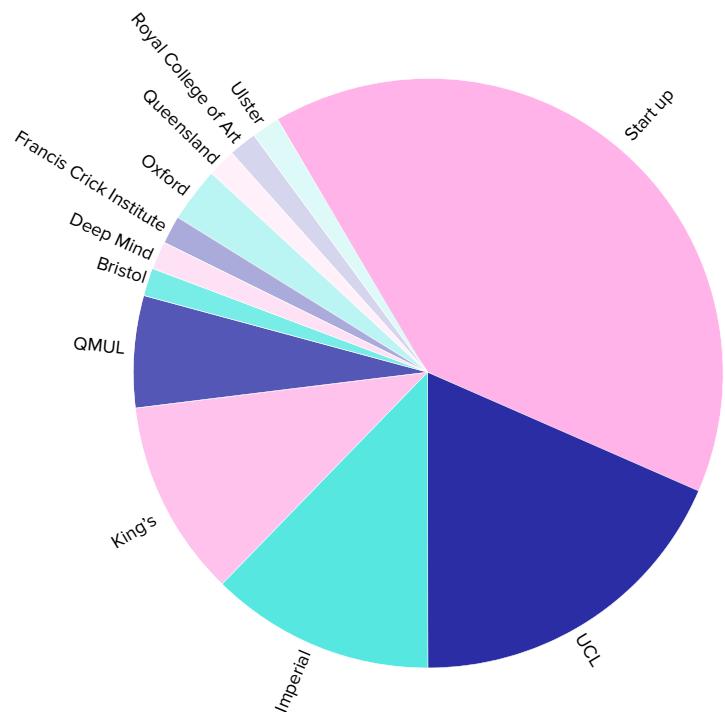


Figure 3: Origin of companies by university or independent spinout

Spread of Companies by Core Technology

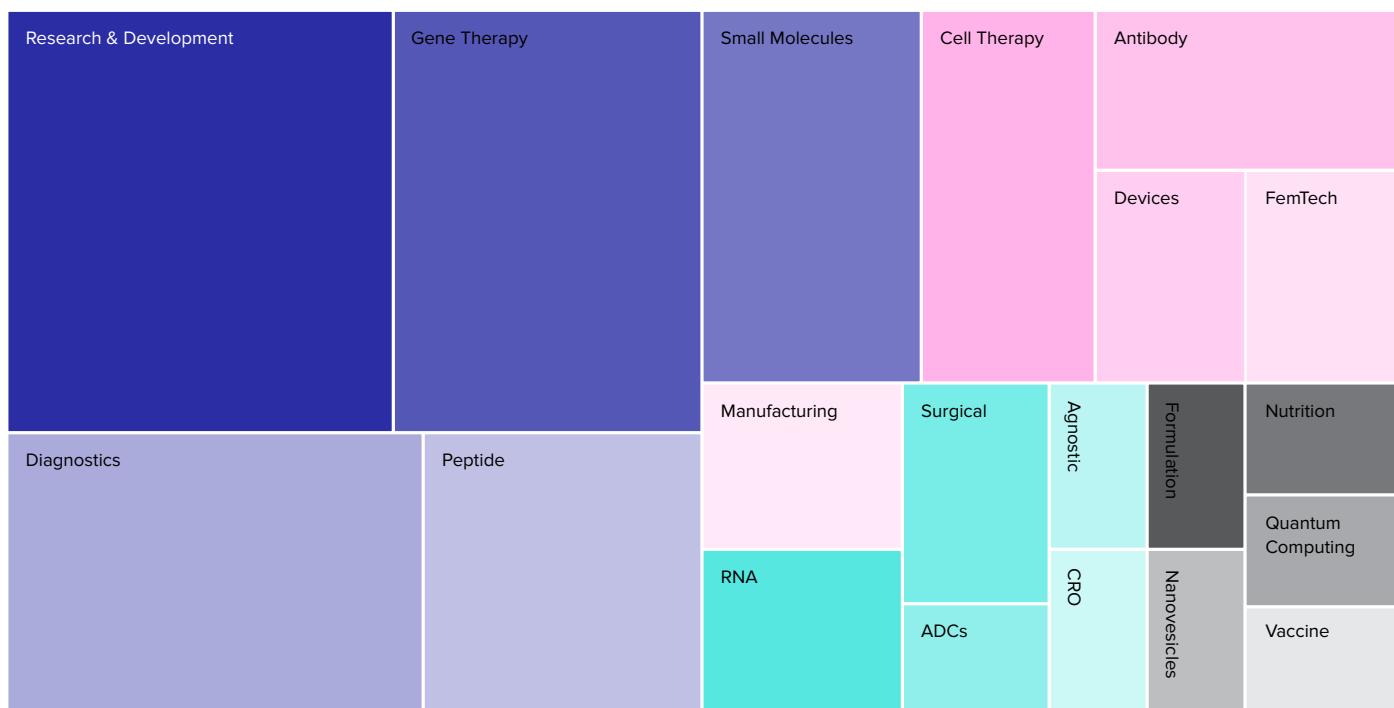


Figure 4: Distribution of technologies and subsectors in the London's Life Sciences Companies to Watch report

The highest frequency of technologies in development are in research and development platforms, and gene therapy, followed by diagnostics, then peptides and cell therapy modalities (figure 4).

Life Sciences Companies to Watch landscape

Average of Investment raised (\$M) by sector, founded and investment raised (\$M)

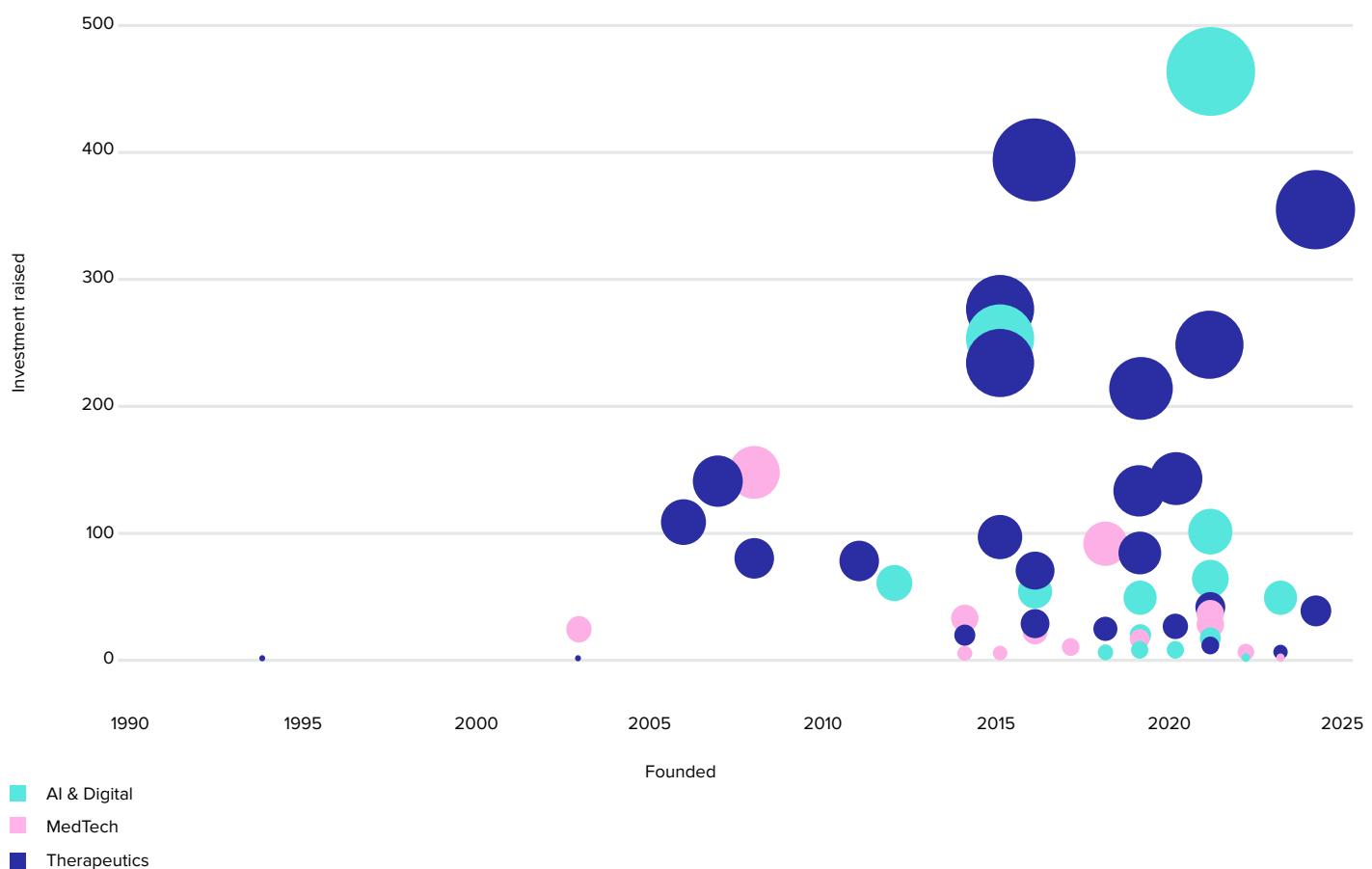


Figure 5: Timeline of companies by year of incorporation and amount raised, split by sector

Companies in this brochure who were founded from 2015 onwards have received higher frequencies of mega rounds of investment and more investment overall. Therapeutics companies generally have raised larger sums of investment and more frequently, barring two large deals in AI and digital since 2015. Medtech companies have consistently raised smaller sums of money but have been established more frequently since 2014 (figure 5).

“London is blessed to have an ecosystem of such exciting life sciences companies who are growing fast and doing such incredible things which could change the lives of so many people. Not only are the patients of the future going to benefit, but a buzzing community in such a great city is offering opportunities for pioneering founders, researchers, investors and others to come together to create something truly amazing. The number of companies in this report showcases the opportunities in London, and VWV are delighted to have been part of this project and be proud partners with MedCity.”

Paul Gershlick
Partner
VWV Law

Life Sciences Companies To Watch 2025: Full List

Category	Company	Sector	Core Tech	Stage	Drug Phase	Spin Out
Fast-growing companies	Autolus	Therapeutics	Cell Therapy	IPO	Marketed	UCL
	AviadoBio	Therapeutics	Gene Therapy	Venture	I/II	King's
	COMPASS Pathways	Therapeutics	Small Molecules	Growth	III	-
	Isomorphic Labs	AI & Digital	Research & Development	Venture	N/A	Deep Mind
	Lindus Health	AI & Digital	CRO	Venture	N/A	-
	MeiraGTx	Therapeutics	Gene Therapy	Venture	III	UCL
	Orchard Therapeutics	Therapeutics	Gene Therapy	Growth	Marketed	UCL
	Purespring Therapeutics	Therapeutics	Gene Therapy	Venture	I/II	Bristol
	Quell Therapeutics	Therapeutics	Cell Therapy	Venture	II	UCL King's
Groundbreaking Tech: AI & Digital	ZOE	AI & Digital	Nutrition	Growth	Marketed	-
	Benevolent AI	AI & Digital	Research & Development	Seed	N/A	-
	CHARM Therapeutics	AI & Digital	Research & Development	Venture	Preclinical	-
	Genevation Ltd	AI & Digital	Research & Development	Seed	Preclinical	-
	Hypervision Surgical	AI & Digital	Surgical	Venture	Clinical	King's
	IMU Biosciences	AI & Digital	Diagnostics	Venture	N/A	-
	Kuano	AI & Digital	Quantum Computing	Venture	N/A	-
	LabGenius Therapeutics	Therapeutics	Antibody	Venture	Preclinical	-
	Micrographia Bio	AI & Digital	Research & Development	Venture	N/A	-
Groundbreaking Tech: Modalities & MedTech	Peptone	AI & Digital	Research & Development	Venture	N/A	-
	Relation Therapeutics	AI & Digital	Research & Development	Venture	N/A	-
	Alchemab	Therapeutics	Antibody	Venture	I	-
	Avacta Therapeutics	Therapeutics	Peptide	IPO	I	-
	DNAe	MedTech	Diagnostics	Venture	N/A	Imperial
	Glialign	Therapeutics	Cell Therapy	Seed	Preclinical	UCL
	Kesmalea Therapeutics	Therapeutics	Small Molecules	Venture	Preclinical	-
	LifT BioSciences	Therapeutics	Cell Therapy	Venture	Preclinical	-
	MediSieve	MedTech	Devices	Seed	Preclinical	UCL

Life Sciences Companies To Watch 2025: Full List

Category	Company	Sector	Core Tech	Stage	Drug Phase	Spin Out
Strong Founding Teams	Amber Therapeutics	MedTech	FemTech	Venture	FIH	Oxford
	Adendra Therapeutics	Therapeutics	Antibody	Seed	Preclinical	Francis Crick Institute
	Entia	MedTech	Diagnostics	Seed	Approved	Imperial
	Epsilogen	Therapeutics	Antibody	Venture	I	King's
	Mytos	MedTech	Manufacturing	Series A	N/A	-
	Pangea Bio	Therapeutics	Small Molecules	Series A	Preclinical	-
	Phaim Pharma	Therapeutics	Peptide	Seed	Preclinical	-
	P.Happi	MedTech	FemTech	Venture	Marketed	-
	Vesalic	Therapeutics	Peptide	Seed	Preclinical	Ulster
	Vivan Therapeutics	AI & Digital	Research & Development	Seed	N/A	-
Challenging Indications	Actimed Therapeutics	Therapeutics	Small Molecules	Venture	IIb/III	-
	Axovia Therapeutics	Therapeutics	Gene Therapy	Seed	FIH	UCL
	Echopoint	MedTech	Surgical	Growth	N/A	UCL QMUL
	Nilocas	MedTech	Diagnostics	Seed	Preclinical	QMUL
	Pulmocide	Therapeutics	Formulation	Venture	I	-
	Silence Therapeutics	Therapeutics	RNA	IPO	III	-
	Verdiva Bio	Therapeutics	Peptide	Venture	II	-
	Vicebio	Therapeutics	Vaccine	Venture	I	Queensland
	30 Technology	Therapeutics	Small Molecules	Venture	I/IIa	Imperial
Founded in London and growing	Akamis Bio	Therapeutics	Gene Therapy	Venture	I	Imperial
	Apollo Therapeutics	Therapeutics	Agnostic	Venture	N/A	UCL Imperial
	Charco Neurotech	MedTech	Devices	Venture	N/A	Royal College of Art
	Epilepsygtx	Therapeutics	Gene Therapy	Seed	Preclinical	UCL
	MyCardium AI	MedTech	Diagnostics	Venture	Marketed	King's
	Pheon Therapeutics	Therapeutics	ADCs	Venture	I	King's
	Revolo Biotherapeutics	Therapeutics	Peptide	Venture	II	King's
	Signatur Bioscience	MedTech	Diagnostics	Seed	N/A	Imperial Oxford
	Spur Therapeutics	Therapeutics	Gene Therapy	Venture	I/II	UCL
	ViaNautis	Therapeutics	Nanovesicles	Venture	N/A	UCL

Fast-growing companies

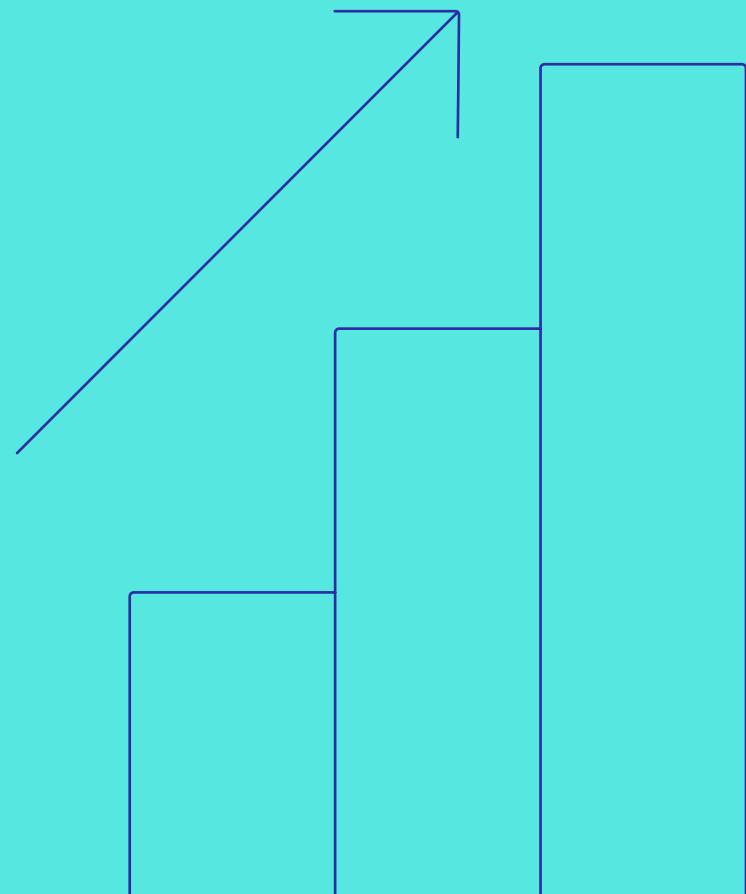
Autolus

AviadoBio

COMPASS Pathways

Isomorphic Labs

Lindus Health


MeiraGTx

Orchard Therapeutics

Purespring Therapeutics

Quell Therapeutics

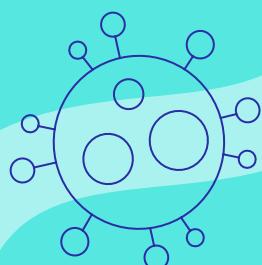
ZOE

All companies have been contacted to notify them of their inclusion in this report. Companies with an asterisk (*) next to their name have not shared direct feedback or revisions on their descriptions, and this information has been sourced from their websites and press releases

Building a leading CAR T company developing therapies for cancer and autoimmune diseases.

- Autolus is applying extensive programming capabilities to develop highly active and precisely targeted Chimeric Antigen Receptor (CAR) T-cell therapies designed to better recognise and eradicate cancer cells.
- The company was founded on advanced cell programming technology pioneered by Dr Martin Pule, which was spun out of UCL in 2014.

Key partnerships:


- BioNTech to advance autologous CAR-T programmes towards commercialisation.
- Cabaletta Bio granting access to the RQR8 safety switch for selected cell therapy programmes in autoimmune diseases.
- Moderna option and licence agreement for Autolus' proprietary targeting technology to develop and commercialise mRNA therapeutics for immune-oncology targets.

Autolus is focussed on developing CAR T-cells with a 'fast off-rate' to minimise toxicity and improve outcomes. The combination of enhanced anti-tumour activity, dual targeting CARs to prevent relapse, safety switches in the case of adverse reaction to the T-cell therapy and shielding the T-cells from immunosuppression at the tumour site, combine to provide a highly effective therapy against solid tumours with minimal side effects.

Candidates against solid tumours and autoimmune indications are in development, bolstered by Autolus' strong IP position with more than 95 patent families. Autolus received FDA approval of Aucatzyl® in Q4 2024, followed by UK and EU approvals in 2025.

Autolus

Founded	2014
Subsector	Therapeutics
Core tech	Cell Therapy
Stage	Public
Development Phase	US, UK, EU marketing approval
Employees	250+
Investment raised	\$350m IPO
HQ	White City

Translating groundbreaking science and precision delivery into potentially life-changing medicines for people living with neurodegenerative diseases such as frontotemporal dementia (FTD) and tauopathies like Alzheimer's disease and frontotemporal dementia (FTD) caused by mutations in the MAPT gene (FTD-MAPT).

- AviadoBio, a King's College London spinout, develops gene therapies for people living with devastating neurodegenerative diseases such as FTD and tauopathies like Alzheimer's disease and FTD-MAPT.
- Distinguished co-founder Prof Chris Shaw and CEO Lisa Deschamps combine world-leading gene therapy and neuroscience expertise, supported by a strong leadership team with extensive gene therapy development and commercialisation experience.

Key partnerships:

- Astellas received an exclusive option to license AVB-101 for development and commercialisation rights in frontotemporal dementia (FTD) with progranulin (GRN) gene mutations (FTD-GRN) and other potential indications. Under the terms of the agreement, Astellas made a \$50m upfront payment, and AviadoBio is also eligible to receive up to \$2.2bn in licence fees and milestone payments, plus royalties if Astellas exercises its option.

AviadoBio is a global biotechnology company with headquarters and science originating in London and more than 60 team members co-located throughout the UK and the US. AviadoBio is focused on targeted and precise drug delivery and dosing for maximal biodistribution with a favourable safety profile. They believe delivery to be the game-changer in overcoming challenges with existing treatment pathways.

AviadoBio's lead pipeline gene therapy, AVB-101, is an investigational one-time therapy designed to deliver a functional copy of the GRN gene directly to the brain, thereby potentially restoring progranulin levels and stopping disease progression in patients with FTD-GRN. In Q4 2023, they announced the opening of ASPIRE-FTD, a Phase I/II open-label multicentre study designed to evaluate the safety and preliminary efficacy of AVB-101 in patients with FTD-GRN. In April 2024, the first patient was treated with AVB-101, marking the first-in-human intrathalamic gene therapy delivery for any adult neurodegenerative disease.

COMPASS Pathways

compasspathways.com

Transforming mental health.

- Compass Pathways is dedicated to accelerating patient access to evidence-based innovation in mental health.

Key assets:

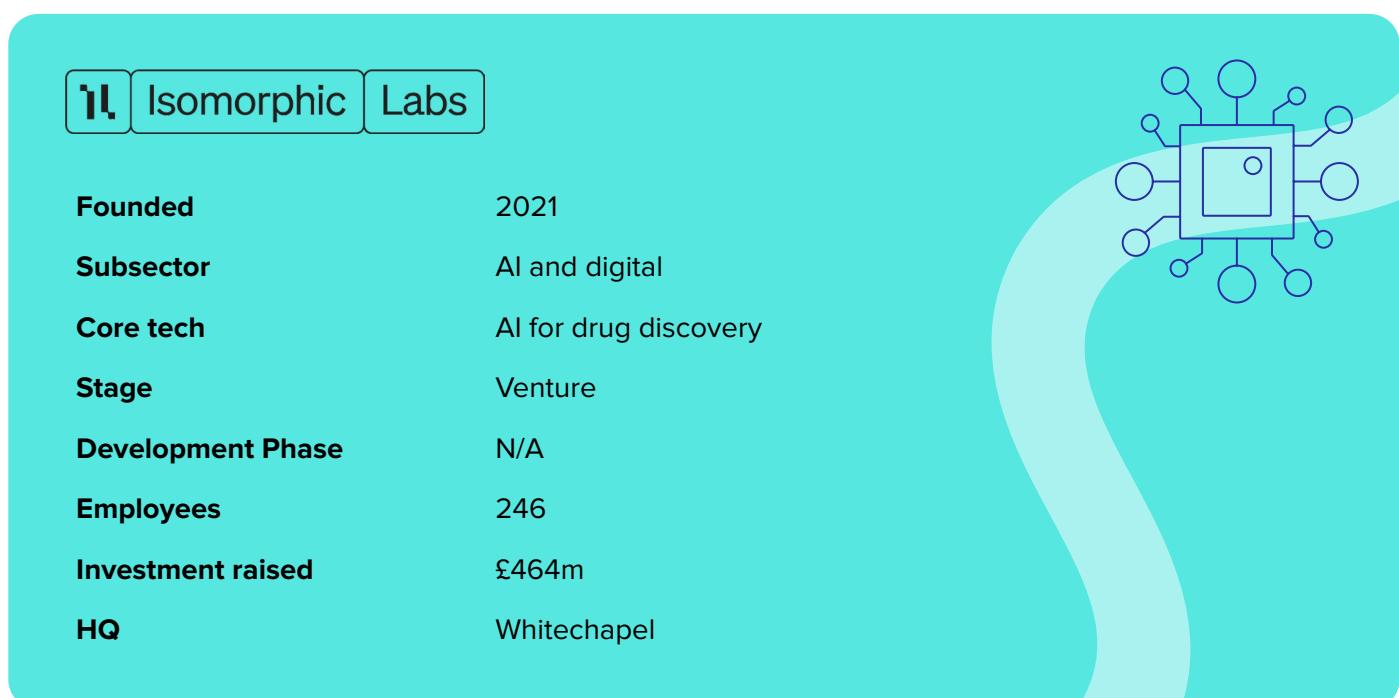
- COMP360 has Breakthrough Therapy designation from the US Food and Drug Administration (FDA) and has received Innovative Licensing and Access Pathway (ILAP) designation in the UK for treatment-resistant depression.

With a mission to chart a new standard of care for the millions facing mental health challenges, the company is motivated by the need to find better ways to help those who are not helped by existing treatments. Compass is currently running two pivotal trials for treatment-resistant depression (TRD), the first of which successfully achieved primary endpoints in 2025. This is the first study of an investigational, synthetic psilocybin, and the first psychedelic to report phase III efficacy data. The company is also evaluating COMP360 for the treatment of post-traumatic stress disorder (PTSD), with successful phase II results recently published in the Journal of Psychopharmacology, and late-stage study design in progress.

Isomorphic Labs*

isomorphiclabs.com

'Solve all disease'. We're entering a new era of drug discovery — one where frontier AI can unlock deeper scientific insights, faster breakthroughs and life-changing medicines. At Isomorphic Labs, we're building that future.


- Isomorphic Labs was launched in 2021 to advance human health by building on and beyond the Nobel-winning AlphaFold system.
- Founders led by Sir Demis Hassabis, Nobel laureate and visionary co-founder of DeepMind who has trailblazed the applications of AI to transform scientific discovery.

Key partnerships:

- Novartis to discover small molecule therapeutics against three challenging targets, expanded in 2025 to include three additional research programmes.
- Eli Lily to discover small molecule therapeutics against a number of undisclosed targets.

Isomorphic Labs have built powerful new predictive and generative AI models that accelerate scientific discovery at digital speed. Isomorphic labs' AI models form a unified state-of-the-art drug design engine with the aspiration to 'solve all disease'.

Their breakthrough AI-first approach means much of the time-consuming experimental work previously associated with identifying a drug candidate in a lab can now be conducted much more quickly and efficiently 'in silico': on a computer. AlphaFold 3 predicts the structure and interactions of all of life's molecules and could be transformative to the drug discovery process. The team have raised one of Europe's largest AI rounds of £464m led by Thrive Capital, alongside GV and Alphabet, and established a US presence in June 2025.

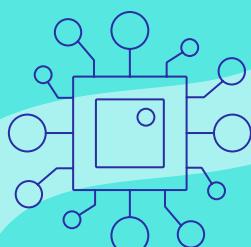
Lindus Health

lindushealth.com

The Anti-CRO for life sciences pioneers offering radically faster, more reliable clinical trials, delivered end to end.

- Lindus Health is a next-generation clinical research company, able to run end-to-end trials up to three times faster than traditional CROs.
- Founded by Michael Young, former special advisor to the UK prime minister, and Meri Beckwith, former biotech venture capital investor.

Key partnerships:


- Oto to launch fully remote digital trials in the UK to improve access to tinnitus therapy through digital Cognitive Behavioural Therapy (CBT).
- Aktiia and Pharmanovia to extend AI-powered trial delivery to new therapeutic areas.

Lindus Health provides an AI-driven clinical trials ecosystem, which handles protocol design, recruitment via EHR access to more than 30 million records, real-time monitoring, biostatistics and centralised data capture to address the fragmented, slow and costly nature of traditional CRO models.

Since its launch, Lindus has conducted more than 80 trials across the UK, US and Europe, enrolling 20,000 patients and delivering trials up to three times faster than legacy CROs. It has raised more than \$75m from Balderton, Creandum, Peter Thiel, Firstminute, Seedcamp and others.

Founded	2021
Subsector	AI
Core tech	Software platform
Stage	Growth
Development Phase	N/A
Employees	173
Investment raised	\$75m
HQ	SC1

MeiraGTx is a vertically integrated, clinical-stage genetic medicines company committed to harnessing the full potential of genetic therapies for both rare and prevalent diseases.

- MeiraGTx is developing genetic medicines across a broad pipeline, supported by end-to-end in-house GMP manufacturing.
- Founded by Alexandria Forbes, a molecular genetics expert, and Richard Giroux, a seasoned executive, to combine deep scientific expertise and strategic business acumen.

Key partnerships:

- Hogen AI to expedite phase III development of AAV-GAD for Parkinson's disease using multi-modal generative AI models of real-world clinical data for clinical medicine and pharmaceutical drug development.

MeiraGTx has developed a novel technology for in vivo delivery of any biologic therapeutic using oral small molecules. This transformative riboswitch gene regulation technology allows precise, dose-responsive control of gene expression by oral small molecules. MeiraGTx is focusing the riboswitch platform on the regulated in vivo delivery of metabolic peptides, including GLP-1, GIP, Glucagon, Amylin, PYY and Leptin, as well as cell therapy, CAR T for liquid and solid tumors and autoimmune diseases, and additionally PNS targets addressing long-term intractable pain. Meira GTx has developed the technology to apply genetic medicine to common diseases, increasing efficacy, addressing novel targets and expanding access in some of the largest disease areas where unmet need remains high.

MeiraGTx has four late-stage clinical programmes and has demonstrated in vivo efficacy across multiple targets and therapeutic modalities. It addresses many current issues associated with injectable peptides or oral drugs with important implications for delivery, manufacturing, access and cost. The platform could provide improvement in efficacy and safety across modalities.

Orchard Therapeutics*

orchard-tx.com

Opening up possibilities for people with rare and inherited diseases

- Orchard Therapeutics, a UCL spinout, develops gene therapy treatments for individuals with rare, life-threatening diseases, with a focus on neurometabolic disorders such as Metachromatic leukodystrophy (MLD) and Mucopolysaccharidosis types I and IIIA (MPS-I/IIIA).
- Founded by pioneering hematopoietic stem cell (HSC) gene therapy researchers Professors Bobby Gaspar and Adrian Thrasher at the UCL Great Ormond Street Institute of Child Health, combining decades of clinical innovation with a vision to deliver transformative one-time treatments for rare genetic diseases.

Key partnerships:

- With GSK to acquire GSK's portfolio of rare-disease gene therapies including Strimvelis and late-stage programmes in MLD, WAS and beta-thalassemia.
- Acquired by Kyowa Kirin in 2024 for a total deal value of up to \$477.6m [https://ir.orchard-tx.com/news-releases/news-release-details/kyowa-kirin-acquire-orchard-therapeutics?utm_source=chatgpt.com]

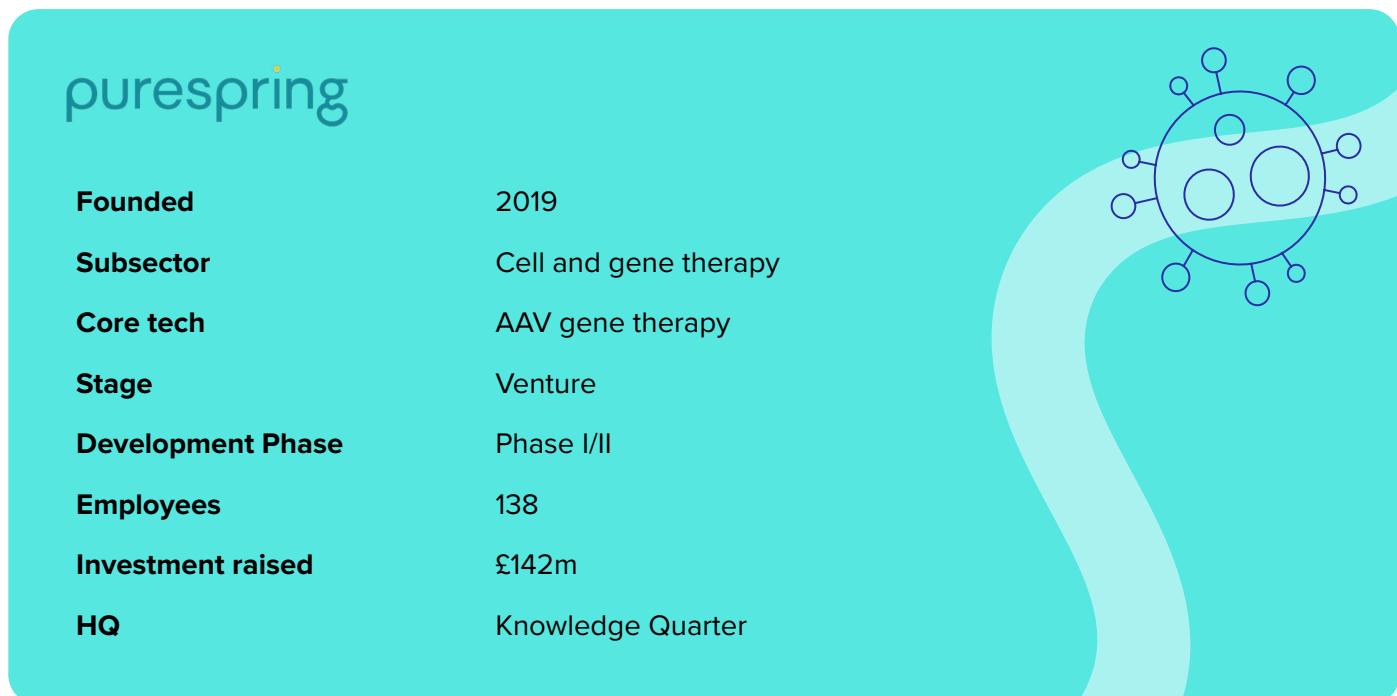
Orchard's ex vivo autologous gene therapy engineers a person's own blood stem cells by inserting into those cells a working copy of the missing or faulty disease-causing gene. They aim to permanently correct genetic disorders with a single treatment, as hematopoietic stem cells or HSCs will self-renew in a patient's bone marrow and produce new blood cells of all types. The therapy has the potential to replace stem cell transplantation from a donor (allogeneic), which can result in serious complications including graft-versus-host disease.

Orchard Therapeutics' lead candidate Libmeldy® (atidarsagene autotemcel) is approved by the European Commission (EC), UK Medicines and Healthcare products Regulatory Agency (MHRA) and Swiss Agency for Therapeutic Products (Swissmedic). Known as Lenmeldy™ in the US, it is the only approved therapy in the US for treatment of children with pre-symptomatic late infantile (PSLI), pre-symptomatic early juvenile (PSEJ) or early symptomatic early juvenile (ESEJ) metachromatic leukodystrophy (MLD).

Purespring Therapeutics

purespringtx.com

Leading a revolution in the treatment of kidney diseases.


- Purespring is the first company to successfully treat kidney disease by targeting the podocyte, a specialised cell that is implicated in most renal diseases, using AAV gene therapy.
- Founded on the pioneering research of Prof Moin Saleem, a world leader in podocyte cell biology and kidney disease.

Key partnerships:

- Syncona provided founding investment and strategic support, enabling Purespring to establish a pipeline of AAV-based gene therapies for kidney disorders.
- SwanBio Therapeutics licensed Purespring's FunSel in vivo 'gene search engine' to enable functional selection of therapeutic factors unconstrained by previous drug discovery bias.

Purespring's platform approach enables streamlined gene therapy development for both monogenic and non-monogenic renal diseases, offering the potential to halt, reverse and even cure both rare and common kidney diseases. It currently has a pipeline of three programmes in development, including the lead asset for treatment of IgA Nephropathy (IgAN).

In Q4 2024, Purespring Therapeutics announced £80m funding from British Patient Capital (Core Fund), Forbion, Gilde Healthcare Venture&Growth, Syncona Partners and Sofinnova Partners to begin Phase I/II trials. In Q1 2025, Purespring received European Medicines Agency (EMA) orphan drug designation for PS-002 for the treatment of patients with primary IgA nephropathy, followed by FDA IND clearance and UK CTA approval for Phase I/II clinical trial for the same condition.

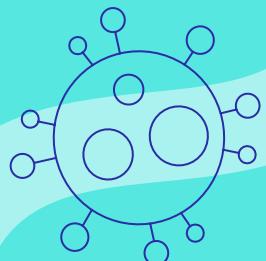
Quell Therapeutics

quell-tx.com

Transforming lives in immune mediated disease.

- Quell Therapeutics is pioneering the development of engineered T-regulatory (Treg) cells to harness, direct and optimise their immune suppressive properties and address serious medical conditions driven by the immune system.
- Founded in 2019 through a partnership between Syncona and six preeminent academics from King's College London, UCL and Hannover Medical School, Quell has raised more than \$325m in total, including a \$156m Series B round in 2021 from top-tier international investors.

Key partnerships:

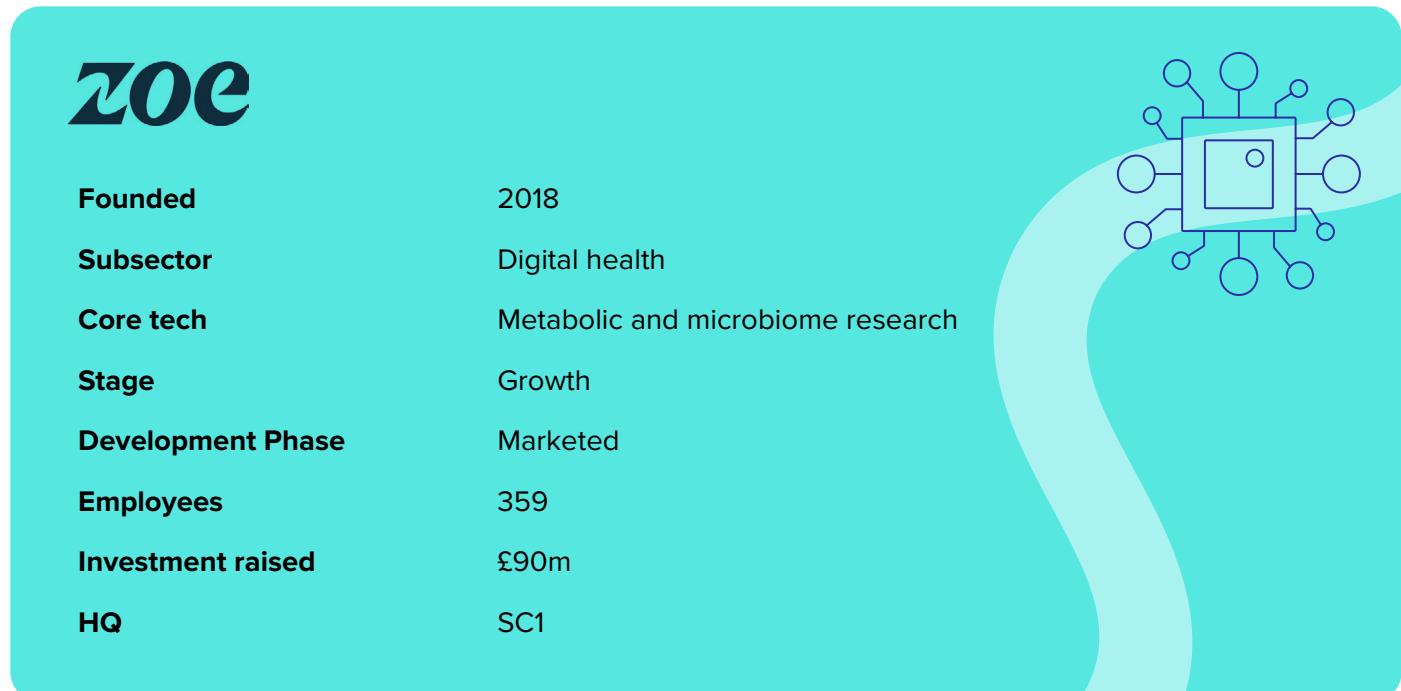

- In 2023, Quell signed a major strategic partnership with AstraZeneca to develop Treg cell therapies for T1D and IBD, highlighting the potential of its platform and bringing in substantial upfront and milestone-based funding.
- AstraZeneca has since exercised its option to license the first candidates from the QEL-002 (T1D) and QEL-003 (IBD) joint-research programmes for further development and commercialisation.

Quell's lead candidates, QEL-001 and QEL-005, are in development for transplantation and rheumatological indications, respectively. QEL-001 is progressing in the Phase I/II LIBERATE clinical trial designed to investigate its ability to induce operational tolerance following liver transplantation and to protect the post-transplant liver without the need for chronic immunosuppressive medications.

QEL-005, a pipeline-in-a-product for complex rheumatic diseases, is also advancing with the CHILL trial in systemic sclerosis and difficult-to-treat rheumatoid arthritis planned to start in 2026. QEL-002 for type 1 diabetes (T1D) and QEL-003 for inflammatory bowel diseases (IBD) are also progressing, with nominated clinical candidates under Quell's landmark partnership with AstraZeneca.

Founded	2019
Subsector	Therapeutics
Core tech	Cell therapy
Stage	Venture
Development Phase	Phase II
Employees	100-150
Investment raised	>\$325m
HQ	White City

We unlock the power of science for everybody.


- ZOE is a personalised nutrition platform born from large-scale microbiome and metabolic research.
- Founded by Prof Tim Spector (King's College London), tech and data veterans Jonathan Wolf (former Criteo CPO) and George Hadjigeorgiou (HouseTrip and e-food founder).

Key partnerships:

- Nightingale Health collaborated with ZOE in 2024 to expand ZOE'S research capabilities by integrating self-collected blood sampling and advanced biomarker analysis into its platform.

ZOE has grown from a viral COVID-symptom tracker into the world's largest nutrition-science study. The core technology is an at-home testing kit for gut microbiome, blood sugar and blood fat responses, and leverages machine learning to provide users with personalised dietary recommendations based on their biological data, which is grounded in its PREDICT study.

ZOE's platform could enable effective, science-backed, individualised dietary guidance and tailored nutrition based on metabolism and gut health. The group continues to publish in top journals like Nature Medicine and Gut and have successfully sequenced more than 300,000 microbiomes.

Groundbreaking tech: AI and digital

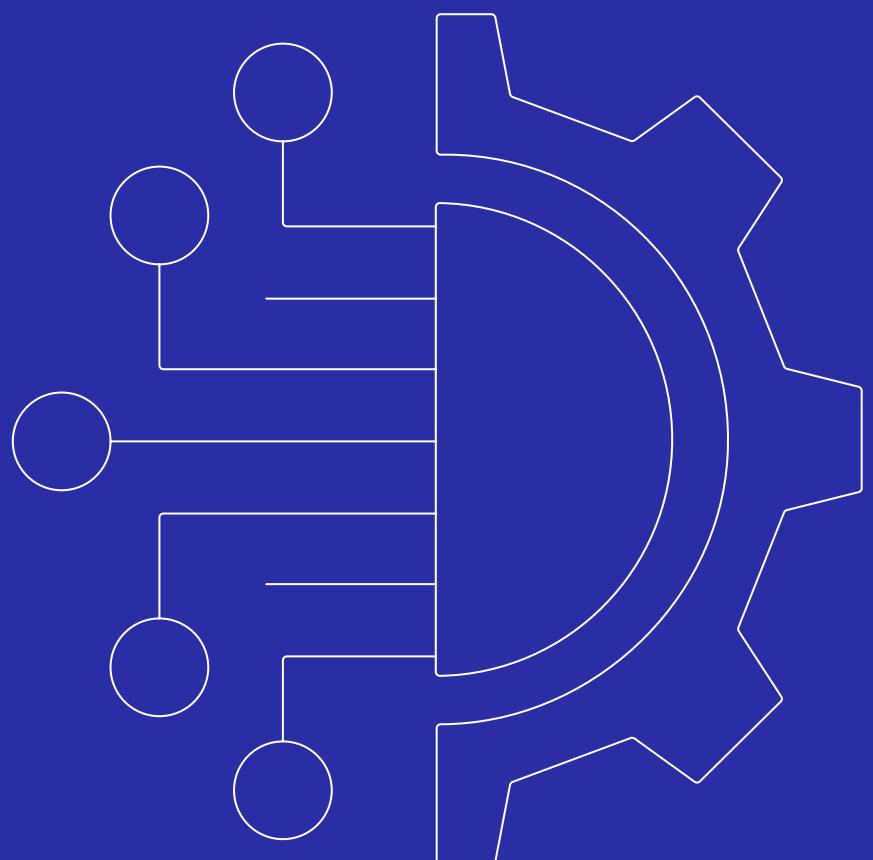
Benevolent AI

CHARM Therapeutics

Genevation Ltd

Hypervision Surgical

IMU Biosciences


Kuano

LabGenius Therapeutics

Micrographia Bio

Peptone

Relation Therapeutics

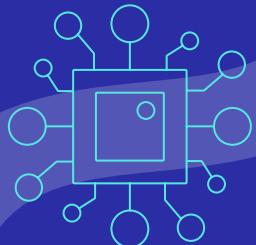
All companies have been contacted to notify them of their inclusion in this report. Companies with an asterisk (*) next to their name have not shared direct feedback or revisions on their descriptions, and this information has been sourced from their websites and press releases

BenevolentAI*

benevolent.com

We build technology in the service of science.

- Tackling failure rates in discovery by mining biomedical information, clinical trials data and academic papers with AI to enhance R&D decision-making.
- Kenneth Mulvany is the founder of BenevolentAI and was the company's chairman from its 2013 foundation until July 2021. He then returned in 2024. Before establishing BenevolentAI, he was the CEO of Proximagen Group plc, a leading biotech firm specialising in the development of medicines to treat neurodegeneration.


Key partnerships:

- Ongoing partnership with AstraZeneca on AI-driven drug discovery for novel targets in chronic kidney disease (CKD), idiopathic pulmonary fibrosis (IPF), systemic lupus erythematosus (SLE) and heart failure.
- Strategic collaboration with Merck using end-to-end AI-enabled drug discovery platform to deliver novel small molecule candidates in oncology, neurology and immunology, with a deal value of up to \$594m.

BenevolentAI's proprietary platform leverages AI-driven knowledge graphs to uncover novel disease mechanisms and accelerate drug discovery, addressing the persistent challenge of high R&D failure rates in biopharma. The company has advanced multiple candidates into clinical trials, including BEN-8744 for ulcerative colitis, while restructuring to focus investment on scalable tech solutions and strategic partnerships.

Benevolent^{AI}

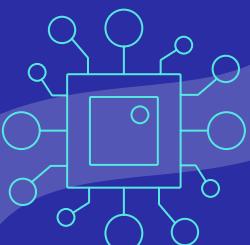
Founded	2013
Subsector	AI and digital
Core tech	AI for drug discovery
Stage	Seed
Development Phase	N/A
Employees	85
Investment raised	\$135m
HQ	Knowledge Quarter

CHARM Therapeutics*

charmtx.com

Pioneering a new generation of menin inhibitors for AML.

- 3D deep-learning AI platform to model protein-ligand co-folding to develop novel medicines and target previously undruggable disease targets, gaining investment from NVIDIA, BMS and more.
- Founded by Nobel Laureate David Baker and Laksh Aithani, CHARM combines a strong track record in next-wave AI and drug discovery and is now focused on advancing its next-generation menin inhibitors into clinical development.


Key partnerships:

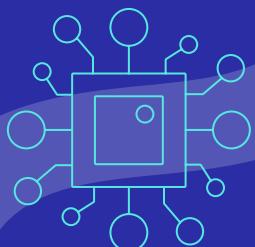
- Collaboration with Bristol Myers Squibb for the discovery of new potential medicines using its proprietary DragonFold platform. [[link](#)]

CHARM Therapeutics is developing next-generation menin inhibitors to target the protein–protein interaction between menin and KMT2A, a key driver of leukemogenesis in acute myeloid leukemia (AML). Using its proprietary DragonFold platform, CHARM has engineered structurally optimized molecules that retain potency against known resistance mutations, aiming to deliver deeper and more durable responses for AML patients.

Founded	2021
Subsector	AI and digital
Core tech	AI for drug discovery
Stage	Growth
Development Phase	Preclinical
Employees	50
Investment raised	\$276m
HQ	Knowledge Quarter

Pioneering personalised cancer vaccines.

- Building ultra-fast, AI-driven personalised mRNA cancer vaccines that can be developed in two weeks instead of eight.
- Founded by Dr Prasun Chakraborty, a former Harvard fellow with more than 18 years of experience in IVT, cancer biology and RNA biology, leading a multidisciplinary team to deliver effective, life-saving cancer treatments.


Key partnerships:

- Collaboration with Google and Nvidia.

Genevation is advancing AI-driven neoantigen discovery from biopsy and blood, and cell-free mRNA manufacturing to develop personalised cancer vaccines, addressing the urgent need for targeted therapies in hard-to-treat cancers, with preclinical programmes underway in lung, skin and colon cancer ahead of clinical trials.

Founded	2022
Subsector	AI and digital
Core tech	AI for drug discovery
Stage	Seed
Development Phase	Preclinical
Employees	2
Investment raised	\$550k
HQ	Knowledge Quarter

Hypervision Surgical

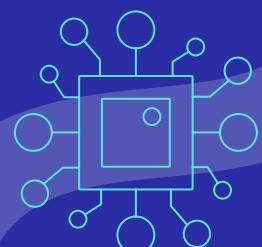
hypervisionsurgical.com

Making surgeries more precise, safer and faster.

Guiding the future of surgery using AI-powered hyperspectral imaging.

- Hypervision Surgical aims to equip clinicians with advanced computer-assisted tissue analysis for improved surgical precision and patient safety using hyperspectral imaging.
- Hypervision Surgical Ltd is a spin-out company from King's College London and was founded by a team of clinicians, medical imaging and artificial intelligence (AI) experts.

Key partnerships:


- Imec have entered a strategic partnership to develop next-generation spectral chips for surgery to develop an ultra-compact, high-resolution intraoperative imaging system.

Despite significant advances in digital and robotic surgery, a fundamental gap remains. Surgeons still operate with limited objective information. Intraoperative decisions today rely heavily on subjective visual assessment and injectable dyes. This lack of real-time, quantitative data continues to drive complications, unnecessary reoperations and systemic inefficiencies across surgical care.

Hypervision Surgical is pioneering a new era of surgical intelligence with the world's first software-centric hyperspectral imaging platform, delivering real-time, pixel-level tissue analytics, revealing previously invisible tissue details without the need for injectable dyes. By combining a proprietary spectral chip with patented AI, its solution transforms standard surgical cameras into intelligent, data-rich tools. Compact and seamlessly compatible with existing workflows, Hypervision's chip-and-AI platform is designed to scale across all surgical vision systems, enabling safer, smarter surgery across more than 500 million procedures annually.

Founded	2020
Subsector	AI and digital
Core tech	Surgical
Stage	Venture
Development Phase	Clinical
Employees	18
Investment raised	£6.86m
HQ	SC1

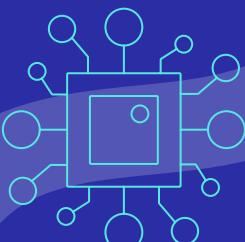
IMU Biosciences

imubiosciences.com

Immune-powered precision medicine.

- IMU Biosciences aims to decode the language of immunology and drive a paradigm shift in how we understand, diagnose and treat disease.
- Founded by Dr Adam Laing and Dr Tom Hayday following a decade of research at King's College London and The Crick Institute, and now supported by a multidisciplinary team to transform healthcare across multiple disease areas.

Key partnerships:


- Many confidential commercial and clinical research partnerships.
- With the MANIFEST consortia to evaluate barriers to the success of immunotherapy and develop predictive biomarkers related to patient response, resistance and immune-related adverse events following immuno-oncology treatments.

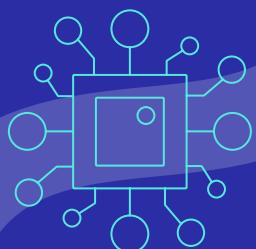
IMU collaborates with clinical research groups, pharmaceutical, biotech and diagnostics companies to identify and deploy clinically actionable immune signatures that advance precision medicine.

IMU's proprietary platform uses multi-omic immune profiling and AI-driven analytics to generate real-time high-resolution insights. With large-scale clinical datasets and partnerships in place, IMU is advancing its platform toward clinical applications in disease diagnostics, treatment and monitoring.

Founded	2021
Subsector	AI and digital
Core tech	Diagnostic
Stage	Venture
Development Phase	N/A
Employees	30
Investment raised	£15m
HQ	Canary Wharf

Revolutionising the way drugs are designed and prioritised, accelerating life-saving discoveries, creating better outcomes and generating savings.

- Kuano is a quantum AI drug discovery company who models enzymes in their dynamic transition states via quantum simulations coupled with AI-driven chemistry to design more potent, selective and mutation-resistant enzyme inhibitors.
- Founded in 2020 by Dr Vid Stojevic, David Wright, Parminder Ruprah and Jarryl D’Oyley, Kuano’s core team blends deep expertise in quantum theory, molecular simulation and medicinal chemistry.


Key partnerships:

- Alzheimer’s Research UK UCL Drug Discovery Institute collaborated to design inhibitors of NOTUM enzyme using Kuano’s quantum transition-state modelling and in silico lead identification, with follow-up testing via DDI.

Kuano’s technology platform builds on quantum mechanical simulations focused on the transition state of enzyme catalytic action, which historically has been hard to model. They construct a “quantum pharmacophore” to capture unique features of this transition state, then integrate AI-based models to explore chemical space and design small molecules that bind specifically to that transition state. This combination enables prediction of inhibitors that are more selective and resistant to off-target effects or resistance based on enzyme mutation.

Founded	2019
Subsector	AI and digital
Core tech	Quantum computing
Stage	Venture
Development Phase	N/A
Employees	16
Investment raised	£4.14m
HQ	London

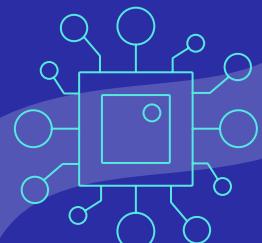
LabGenius Therapeutics

labgeniustx.com

Combining human and machine intelligence to discover the next generation of therapeutic antibodies.

- LabGenius Therapeutics leverages high-throughput functional screening combined with machine learning to accelerate the discovery of complex multispecific antibodies, such as T-cell engagers.
- Founded by CEO James Field, LabGenius Therapeutics is led by a multidisciplinary team, including Hannah Seitz (Chief Business Officer) and Angus Sinclair (Chief Scientific Officer).

Key partnerships:


- LabGenius Therapeutics partnered with the Sanofi company Ablynx to apply its machine learning (ML)-driven protein engineering platform, EVA™, to optimise therapeutic NANobody® proteins.

Complex antibodies, like multispecifics, are hard to engineer because the relationship between design and function is often non-intuitive. As a consequence, conventional methods are liable to deliver sub-optimal molecules which either fail in the clinic or result in poor patient outcomes. LabGenius Therapeutics' EVA™ is a highly automated discovery engine that enables the rapid identification and co-optimisation of complex therapeutic antibodies across multiple key properties.

The platform is both modality and format-agnostic but the internal pipeline is focussed on the discovery of selectivity-enhanced antibodies for the treatment of solid tumours to deliver therapeutics with best-in-class killing profiles.

Founded	2012
Subsector	Therapeutics
Core tech	Antibody
Stage	Venture
Development Phase	Preclinical
Employees	60
Investment raised	>£55m
HQ	London

Discovery in a blink.

- Micrographia Bio is an AI-first spatial proteomics pathways company using high-multiplex microscopy and machine-intelligent computer vision to uncover the true mechanism of action of drug candidates by visualising proteins in their native, spatial nano-scale cellular context.
- Founded by CEO Julia Fan Li, Seven Bridges Genomics, Global Health Investment Fund, Novartis, together with CTO Chris Thompson, a technologist with strong domain knowledge in protein signalling, computer vision and robotics from Imperial College London.

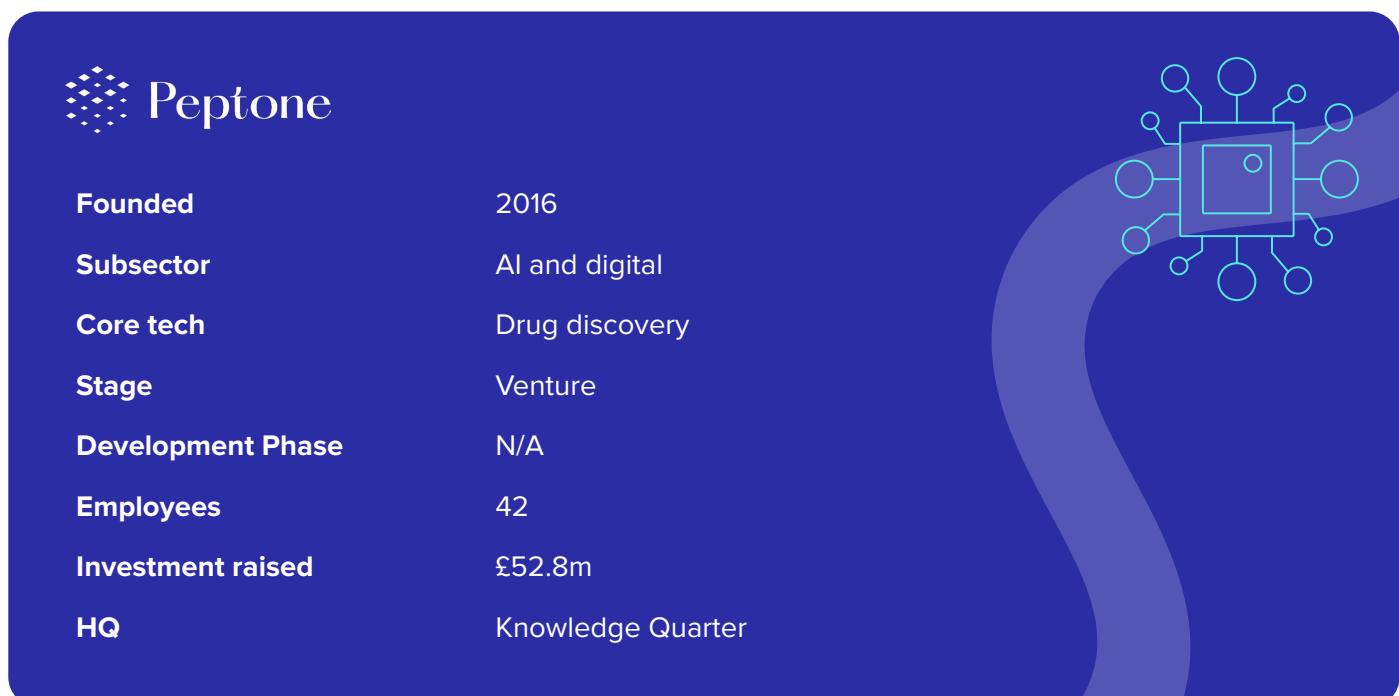
Key partnerships:

- Drug discovery collaborations in understanding lysosomal trafficking, induced proximity of molecular glue degraders and unlocking complex biology in GPCR signalling bias.

Micrographia Bio's core technology is a spatial proteomics platform, using highly multiplexed microscopy, advanced deconvolution, machine vision and AI to produce high-resolution spatial data of protein abundances, locations and interactions inside cells, enabling an autonomous system for determining mechanism of action of therapeutics.

Drug discovery often depends on genomic or transcriptomic data, which don't capture where proteins are, how they move between cellular compartments or how they physically interact in space. Many drug failures arise from incomplete understanding of therapeutic action and off-target effects. Micrographia aims to reduce this uncertainty by revealing subcellular protein dynamics and interaction networks under perturbation.

	Micrographia Bio
Founded	2020
Subsector	AI and digital
Core tech	Drug discovery
Stage	Venture
Development Phase	N/A
Employees	19
Investment raised	£6.57m
HQ	White City


Drugging disordered proteins the new way.

- Peptone uses a combination of physics-based experiments and machine-learning and supercomputing to discover small-molecule therapeutics against intrinsically disordered proteins (IDPs), a class of proteins that lack fixed structure, long considered “undruggable”.
- Founded by Dr Kamil Tamiola with co-founders and early team drawn from top academic labs across Cambridge, Oxford, ETH Zurich and Groningen.

Key partnerships:

- Evotec partnered for Peptone to use Evotec’s medicinal chemistry, assay development and screening capabilities, in combination with Peptone’s HDX-MS and dynamic modelling, to discover small molecules targeting IDPs.
- NVIDIA and Verne Global for Peptone to deploy high-performance computing infrastructure to scale their platform.
- Institute of Oncology Research (IOR), Bellinzona have a sponsored research agreement focused on identifying novel oncology targets in prostate cancer, leveraging Peptone’s IDP-targeting platform together with translational cancer biology from IOR.

Peptone’s core technology platform combines ultra-fast Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS), NMR, experimental data on protein dynamics, and large-scale molecular simulations and machine learning. This enables the identification of “pockets” or binding opportunities on intrinsically disordered proteins (IDPs), which are regions of disordered proteins that transiently fold or adopt conformations suitable for small-molecule binding. IDPs are implicated in many diseases but are not well served by classical structure-based drug design or AI methods that rely on fixed binding pockets because they don’t have stable 3D structure.

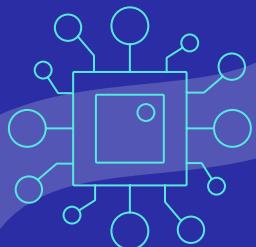
	Peptone
Founded	2016
Subsector	AI and digital
Core tech	Drug discovery
Stage	Venture
Development Phase	N/A
Employees	42
Investment raised	£52.8m
HQ	Knowledge Quarter

Relation Therapeutics

relationrx.com

Discovering biology's relationships, curing disease.

- Relation's 'Lab-in-the-Loop' approach combines human genetics, single cell multi-omics directly from human tissue, functional assays and machine learning to discover novel disease interventions.
- Founded by Charles Roberts, Benjamin Swerner and Jake Taylor-King, Relation's leadership includes David Roblin, CEO, formerly Head of European R&D at Pfizer, CTO Lindsay Edwards, former VP and head of AI for respiratory oncology at AstraZeneca, Rosie Rodriguez, SVP Growth, former Chief of Staff to Hal Barron at GSK, leading Relation's growth, alliances and ecosystem strategy.


Key partnerships:

- Relation Therapeutics have generated more than \$120m in partnerships revenue through IND-enabling work, in vivo validation, two big pharma collaboration programmes and a third new partnership.
- GSK have partnered to discover and validate novel therapeutic targets for fibrotic diseases and osteoarthritis, leveraging Relation's platform to generate human-tissue derived data and validate targets before clinical development.

Relation aims to take multiple therapeutic programmes to clinical proof-of-concept. Relation is a world leader in building multi-omic single cell atlases of disease and healthy tissue and has developed the largest bone single-cell atlas in the world. In addition, Relation's platform also uncovers the genetic and mechanistic causes of disease and provides a system to support iterative hypothesis refinement through machine learning, with evidence tracing to ensure explainability.

Founded	2019
Subsector	AI and digital
Core tech	Drug discovery
Stage	Growth
Development Phase	N/A
Employees	100
Investment raised	\$200m
HQ	Knowledge Quarter

Groundbreaking tech: modalities and medtech

Alchemab

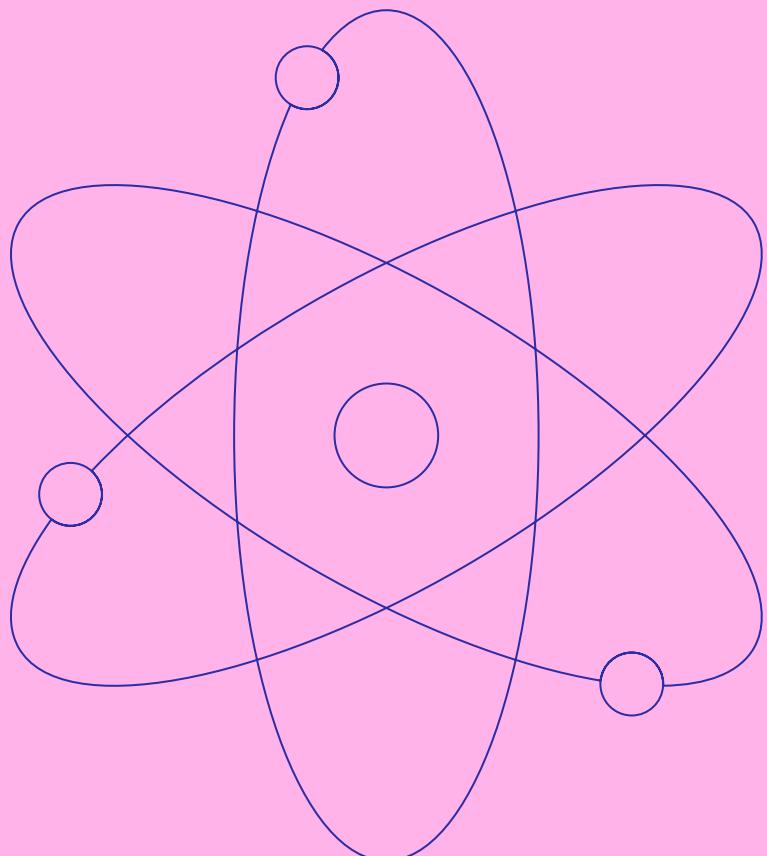
Avacta Therapeutics

DNAe

Glialign

Kesmalea Therapeutics

LifT BioSciences


MediSieve

MiNA Therapeutics

Mitra Bio

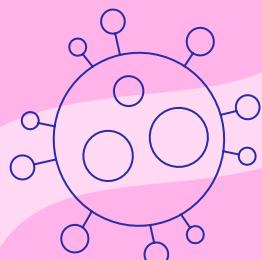
Portal Biotech

Touchlight

All companies have been contacted to notify them of their inclusion in this report. Companies with an asterisk (*) next to their name have not shared direct feedback or revisions on their descriptions, and this information has been sourced from their websites and press releases

Harnessing naturally protective antibodies to tackle hard-to-treat disease.

- Alchemab is using deep B-cell repertoire sequencing, computational biology and functional validation to discover “protective” antibodies from resilient individuals as therapeutics for neurodegeneration, oncology, ALS and other diseases.
- Alchemab was co-founded by Jane Osbourn, former VP R&D at MedImmune, who drove discovery and development of drugs like Humira® and Imfinzi®.


Key partnerships:

- Lilly began a collaboration in 2025 to discover, develop and commercialise up to five therapeutic antibodies for ALS.
- In a separate deal, Alchemab subsequently licensed ATLX-1282, a broadly neuroprotective IND-ready asset, to Lilly in May 2025 for a total deal value of \$415m. Alchemab advanced this asset into clinical trials in August 2025.

Alchemab’s platform starts by collecting patient cohorts that are resilient who, despite risk factors, either don’t develop disease or show much slower progression. They sequence B-cell and antibody repertoires from those individuals, apply computational analysis and machine learning to detect “convergent” protective antibody responses, then use functional validation to identify antibodies and targets that are disease-modifying rather than just symptomatic. Using resilient-based discovery offers an alternative route to target-based or phenotypic screening, often revealing novel biology and therapeutic modalities.

Founded	2019
Subsector	Therapeutics
Core tech	Antibody discovery
Stage	Venture
Development Phase	Phase 1
Employees	55
Investment raised	\$114m
HQ	Knowledge Quarter

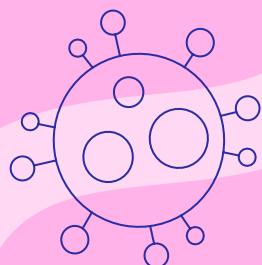
Avacta Therapeutics

avacta.com

Drug release is triggered ONLY at the tumour site by fibroblast activating protein (FAP), a protein found in tumour-supporting cells.

- Avacta Therapeutics is developing their proprietary preCISION® platform to deliver ultra-potent payloads selectively to tumour microenvironments by leveraging tumour-specific protease biology in conjugates that reduce systemic toxicity.
- CEO Chris Coughlin brings extensive leadership experience spanning advanced therapies scientific and venture development.

Key partnerships:

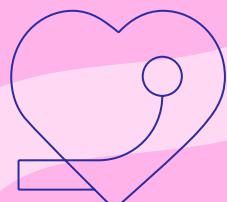

- Tempus AI to provide access to multimodal datasets to deepen understanding of FAP biology and the tumor microenvironment.

Avacta's preCISION® platform is a tumour-targeted payload delivery system with an engineered peptide that is only cleaved by fibroblast activation protein (FAP), which is overexpressed in many solid tumours but low in healthy tissues. This enables tumor-specificity, reducing off-target toxicity to deliver potent drugs at full dose while avoiding systemic side effects.

Avacta has expanded its preclinical pipeline with AVA6103, a peptide drug conjugate carrying a potent topoisomerase I inhibitor to target tumours. The lead clinical candidate AVA6000 is in Phase 1 trials, and shows reduced toxicities, durable tumour responses in multiple disease settings, and higher accumulation of the active drug in tumours versus plasma.

Founded	2003
Subsector	Therapeutics
Core tech	Peptide discovery
Stage	Venture
Development Phase	Phase I
Employees	44
Investment raised	\$76m
HQ	White City

The first true point-of-need Next-Generation Sequencing company.


- DNAe is developing semiconductor microchip-based, direct-from-sample sequencing platforms (LiDia-SEQ™ / Genalysis®) to enable fast, point-of-need detection of infectious diseases, antimicrobial resistance and oncology biomarkers.
- Founded by Regius Prof Christofer Toumazou (Imperial), DNAe builds on his invention of a label-free, optics-free semiconductor sequencing method that uses ion-sensitive transistors to detect protons released during DNA synthesis.

Key partnerships:

- nanoMR was acquired by DNAe to integrate an immunomagnetic Pathogen Capture System to build a full “blood-to-result” workflow, enabling detection of bacteria and fungi in bloodstream infections with high sensitivity, in two to three hours.

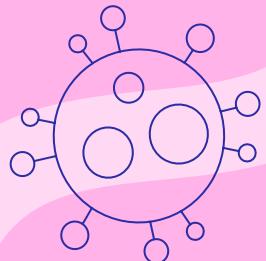
DNAe's core technology uses CMOS transistor devices to detect hydrogen ions released during DNA synthesis. This enables sequencing and molecular diagnostic assays that avoid complex optics, labels and dyes, and reduce cost, size and complexity. DNAe are developing applications in rapid diagnostics for bloodstream infections (BSI), antimicrobial resistance and sepsis, where time to identify the pathogen and its antibiotic resistance profile matters critically. DNAe is also developing capabilities in cancer monitoring via liquid biopsy to detect recurrence or unresponsiveness earlier than current standard methods.

DNAe	
Founded	2003
Subsector	Medtech
Core tech	Diagnostics
Stage	Venture
Development Phase	N/A
Employees	188
Investment raised	\$22.6m
HQ	White City

Engineers of living neural tissue.

- Glialign is developing an off-the-shelf cell-based nerve growth guide “Engineered Neural Tissue” or EngNT, to repair peripheral nerve injuries and improve functional recovery.
- Founded by James Phillips from UCL and John Sinden, former scientific lead at ReNeuron and long-standing neurobiology researcher.

Key partnerships:


- McGill University, Montreal, Canada.
- University College London, UK.

Glialign’s core technology, EngNT, includes aligned therapeutic cells embedded in a natural gel scaffold, encased in an outer sheath and designed to mimic the structure of a peripheral nerve graft. The alignment of cells is crucial to guide regenerating nerve fibres across injury gaps. This “living nerve growth guide” is proposed as an off-the-shelf, allogeneic cell therapy to overcome limitations of autografts.

Glialign have completed successful proof-of-concept funding rounds to support in vivo experiments, which demonstrate efficacy of improved EngNT constructs, academic-industrial validation combining Glialign’s EngNT with various therapeutic cells and published preclinical data that EngNT supports and guides nerve regeneration and recovery of function in animal models.

Glialign

Founded	2016
Subsector	Therapeutics
Core tech	Cell and gene therapy
Stage	Seed
Development Phase	Preclinical
Employees	0
Investment raised	£290k
HQ	Knowledge Quarter

Kesmalea Therapeutics

kesmalea.com

Transforming large protein degraders into small, oral, CNS-penetrant drugs.

- Kesmalea is developing novel small-molecule protein degraders using its SELFTAC® technology to deliver orally bioavailable, CNS-penetrant therapeutics for neurological disorders and oncology targets.
- Founded by Dr Harry Finch, a medicinal chemist who was a co-inventor of GSK's asthma drug salmeterol and held prior roles in Roche and GlaxoWellcome.

Kesmalea's core technology is SELFTAC®, a platform designed to divide large bifunctional protein degraders (such as PROTACs) into two smaller monomeric warheads connected by a reversible linker. These small molecules can self-assemble at the target site in the body, combining the target protein degradation power of PROTACs with improved drug-like properties such as oral availability and CNS penetration.

Kesmalea's approach addresses a critical challenge: many existing protein degraders are too large for oral administration and fail to cross the blood–brain barrier, limiting their use in CNS diseases. Kesmalea's innovation opens new therapeutic possibilities for neurodegenerative conditions and cancers where CNS penetration is essential.

Founded

2020

Subsector

Therapeutics

Core tech

Small molecules

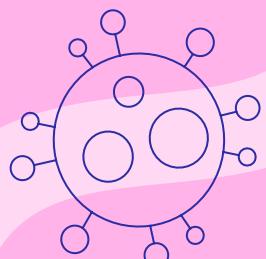
Stage

Venture

Development Phase

Preclinical

Employees


16

Investment raised

£25m

HQ

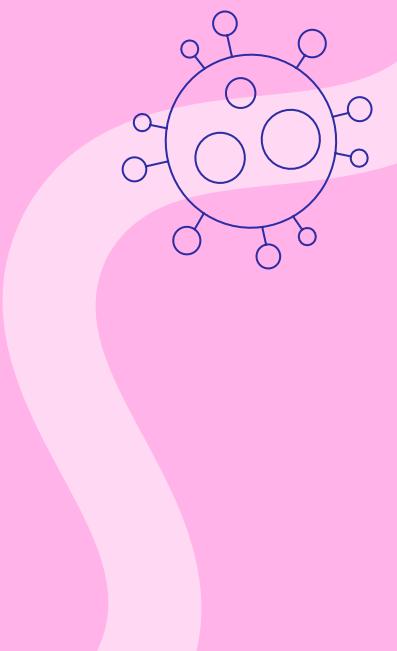
Hammersmith

Innately curing cancer with Immuno-Modulatory Alpha Neutrophils (IMANs).

- LifT BioSciences is developing first-in-class allogeneic neutrophil-based immunotherapy, designed to restore immune competence and overcome treatment resistance in solid tumours.
- Founded by Alex Blyth after his mother died of pancreatic cancer, who is joined by a leadership team including Antonin De Fougerolles, Bo Rode Hansen, Alfonso Quintás-Cardama and Mark Exley, who have deep experience in cell therapy and oncology and securing high-profile exits.

Key partnerships:

- University of Galway and Hooke Bio partnered under a €12m DTIF grant in 2025 to run the first-in-human clinical trial for IMAN therapy.
- Bayer Co.Lab have licensed access to the Co.Lab facility to accelerate research and development of LifT's IMAN platform.


LifT's engineered neutrophils are derived from either hematopoietic stem cells (HSCs) or induced pluripotent stem cells (iPSCs) from "super donors" who show exceptional innate anti-cancer activity. IMANs are designed to have enhanced cancer killing both directly, through non-antigen specific cytotoxicity, and indirectly, by modulating the tumour microenvironment to recruit and activate endogenous immune effectors.

Many solid tumours are resistant to current immunotherapies due to immune evasion, low antigenicity or dysfunctional innate immune responses. LifT aims to overcome these limitations by supplying functional neutrophils that modulate the TME against the tumour and prevent tumour antigen escape.

LifT BioSciences

Founded	2014
Subsector	Cell and gene therapy
Core tech	Cell therapy
Stage	Venture
Development Phase	Preclinical
Employees	20
Investment raised	£18.6m
HQ	Knowledge Quarter

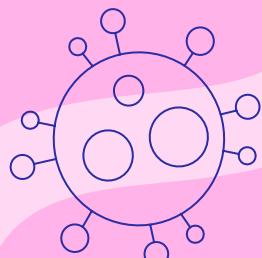
Medisieve

medisieve.com

Magnetic Blood Filtration — Remove pathogens, such as harmful cells, bacteria, toxins and inflammatory cytokines, directly from a patient's bloodstream.

- MediSieve has developed an extracorporeal magnetic blood-filtration platform that uses antibody-coated magnetic beads and a magnetic capture chamber to selectively remove disease-causing targets from blood.
- Founded by Dr George Frodsham and Prof Quentin Pankhurst (UCL), MediSieve's leadership is anchored in award-winning academic work and strong entrepreneurial training.

Key partnerships:


- Nikkiso Medical provides the PureADJUST hemoperfusion apheresis pump to ensure comparability with established extracorporeal blood-circulation hardware.
- Radboud University Medical Center collaborated on first-in-human clinical investigations of MediSieve's technology.
- Two undisclosed partnerships with the leading AAV gene therapy companies.

MediSieve's technology works by mixing magnetic beads into a patient's blood extracorporeally; these beads are either naturally magnetic or coated with antibodies targeting specific harmful agents. The blood then flows through a chamber where a magnetic filter captures the beads with bound targets before returning 'cleaned' blood to the patient. The bead chemistry is configurable, allowing the platform to be retargeted to other indications such as sepsis, hyperinflammation or pathogen removal.

Up to 60% of patients are excluded from systemic AAV therapy by pre-existing anti-AAV NAbs, and same-capsid redosing is effectively impossible. MediSieve's capsid-specific approach rapidly clears NAbs, enabling initial treatment and same-capsid redosing. The lead application is capsid-specific removal of anti-AAV antibodies (NAb) to enable first-line systemic AAV therapy and safe same-capsid redosing. In 2024, MediSieve published safety data in *Nature Scientific Reports* from a study in healthy adult volunteers for its magnetic blood filtration (capture system only), showing the approach is well tolerated with no serious adverse events.

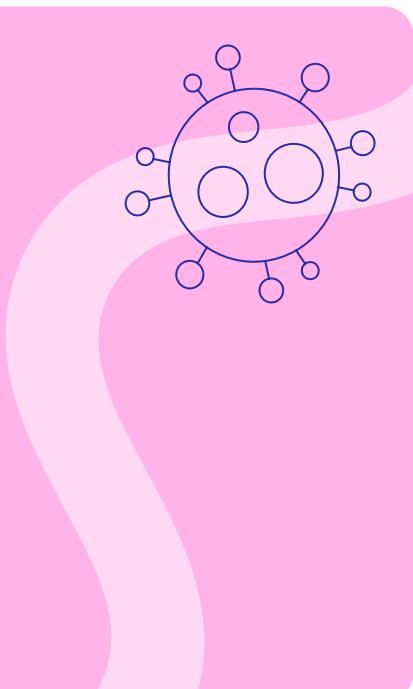
Founded	2014
Subsector	Medtech
Core tech	Therapeutic
Stage	Seed
Development Phase	Preclinical
Employees	11
Investment raised	£3.9m
HQ	White City

MiNA Therapeutics

minatx.com

Activating RNA, mastering disease.

- MiNA Therapeutics is the leader in small activating RNA (saRNA or RNAa) therapeutics.

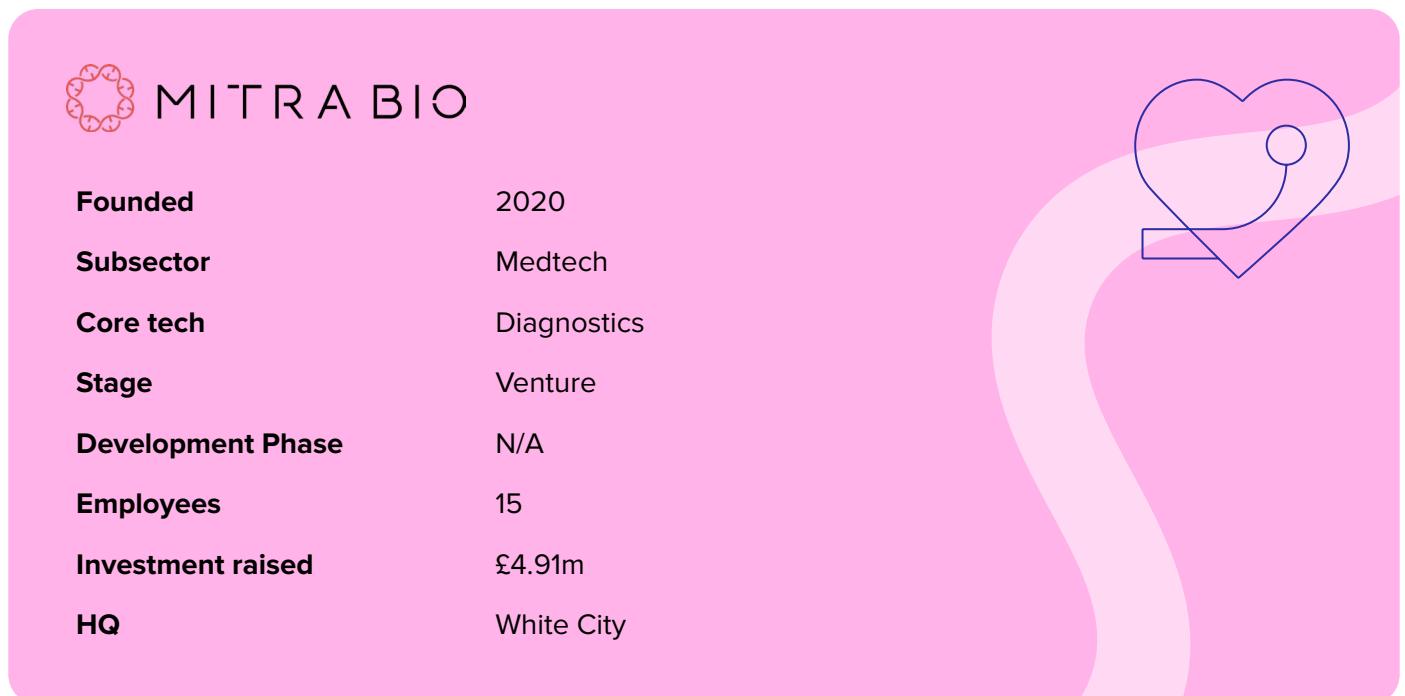

Key partnerships:

- MiNA Therapeutics is advancing additional programmes in collaboration with its industry partners BioMarin Pharmaceutical and Nippon Shinyaku.

Harnessing innate mechanisms of gene activation, RNAa therapeutics are a revolutionary new class of medicines that can restore normal function to patients' cells. MiNA established clinical proof of platform with the world's first RNAa medicine MTL-CEBPA, which has been evaluated in more than 130 patients. MiNA is advancing a proprietary pipeline of new medicines for genetic diseases, while collaborating with leading pharmaceutical companies to apply the RNAa technology platform across a broad range of therapeutic areas.

The company's lead programme, MTL-HBG, is in pre-clinical development for sickle cell disease. MTL-HBG has the potential to be the first in vivo medicines to fully protect sickle cell patients from disease symptoms. Pre-clinical proof of concept for the programme was unveiled in an oral presentation at the European Hematology Association 2025 congress.

MiNA Therapeutics	
Founded	2008
Subsector	Therapeutics
Core tech	RNA
Stage	Venture
Development Phase	Preclinical
Employees	24
Investment raised	£100m
HQ	White City



Tap into skin epigenetics for clinical success of therapeutics.

- Mitra Bio is developing a non-invasive skin epigenetic profiling platform that uses tape-strip sampling and next-generation sequencing to measure biomarkers of skin aging, sun damage and inflammation.
- Founded by Shakiba Kaveh and Cristiana Banila, who bring materials science, bioinformatics, skin biology and entrepreneurial experience.

Mitra Bio is able to monitor effects of skincare or medical interventions on skin's epigenetic state, track biological age of skin, and stratify or predict responders to treatments. The technology addresses the lack of human, non-invasive, reliable biomarkers to measure skin health at the molecular level.

Using human biomarkers, Mitra Bio aims to provide faster, more ethical and clinically relevant evaluation of skin therapies and formulations. Mitra Bio's epigenetic 'MitraClock' is being used in 20 clinical trials evaluating skincare ingredients, devices, supplements and lifestyle interventions.

	MITRA BIO
Founded	2020
Subsector	Medtech
Core tech	Diagnostics
Stage	Venture
Development Phase	N/A
Employees	15
Investment raised	£4.91m
HQ	White City

Portal Biotech*

portalbiotech.com

Revolutionising proteomics through single-molecule sequencing.

- Portal Biotech is developing the world's first benchtop platform for full-length single-molecule protein sequencing, using bioengineered nanopores and AI-driven analysis to uncover protein structure, modifications and dynamics.
- Co-founded by Andy Heron, senior member of Oxford Nanopore Technology, and Giovanni Maglia, a professor at Groningen University involved in bioengineering applications using nanopores for almost two decades.

Key partnerships:

- With their EFRO project, Portal Biotech partners with Rijksuniversiteit Groningen, GECCO Biotech B.V. and Cortalix B.V. to develop and validate a portable nanopore technology-based analyser for proteins, peptides and biomolecules (nanopore analyser).

Portal Biotech's technology enables comprehensive protein analysis without the limitations of traditional mass spectrometry. By providing detailed insights into protein structures and modifications, the platform has the potential to accelerate drug discovery, improve diagnostic precision and enhance our understanding of various diseases.

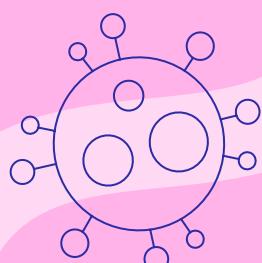
Founded	2021
Subsector	Medtech
Core tech	Research
Stage	Venture
Development Phase	N/A
Employees	31
Investment raised	£34.1m
HQ	White City

DNA is our DNA™ – reimagining DNA production to meet the evolving needs of innovators.

- Touchlight is an innovation-driven leading CDMO pioneering enzymatic GMP DNA production to enable the genetic medicine revolution.
- Founded by Jonny Ohlson Executive Chair. Former executive from Lonza, Karen Fallen is CEO.

Key partnerships:

- MHRA granted GMP certification in Q1 2025, the first facility producing synthetic DNA to do so.
- Eight IND/CTAs filed with customer programmes and seven in preparation across a range of genetic medicine applications.
- Technology licences with Pfizer, GSK, Bayer Voyager and most recently CEVA.


As pioneers, with an FDA Drug Master File accepted in 2022 followed in 2025 with the world's first cell-free DNA GMP licence, Touchlight's enzymatic DNA technology is on the cutting edge of AAV, mRNA, DNA vaccine and gene editing technology, with its state-of-the-art facility recognised by ISPE's Facility of the Year Awards (FOYA) for Innovation.

With multiple client products already in the clinic, Touchlight's evidence-based, synthetic DNA manufacturing solutions offer a scalable, sustainable alternative to plasmid DNA (pDNA) for all stages of pre-clinical, clinical and commercial development. The company and technology are built on the conviction that DNA is fundamental to the future of medicine. Traditional methods, based on bacterial fermentation, are slow, costly and unable to meet the growing demands of genetic medicine due to limited scalability and speed. Founded in 2007, Touchlight's team is inspired by breakthroughs in genetic medicine, recognising the urgent need for innovative DNA production techniques to support the future of genetic therapies.

TOUCHLIGHT

Founded	2007
Subsector	Manufacturing
Core tech	Advanced therapies
Stage	Growth
Development Phase	GMP DMF
Employees	151
Investment raised	£108m
HQ	West London

Strong founding teams

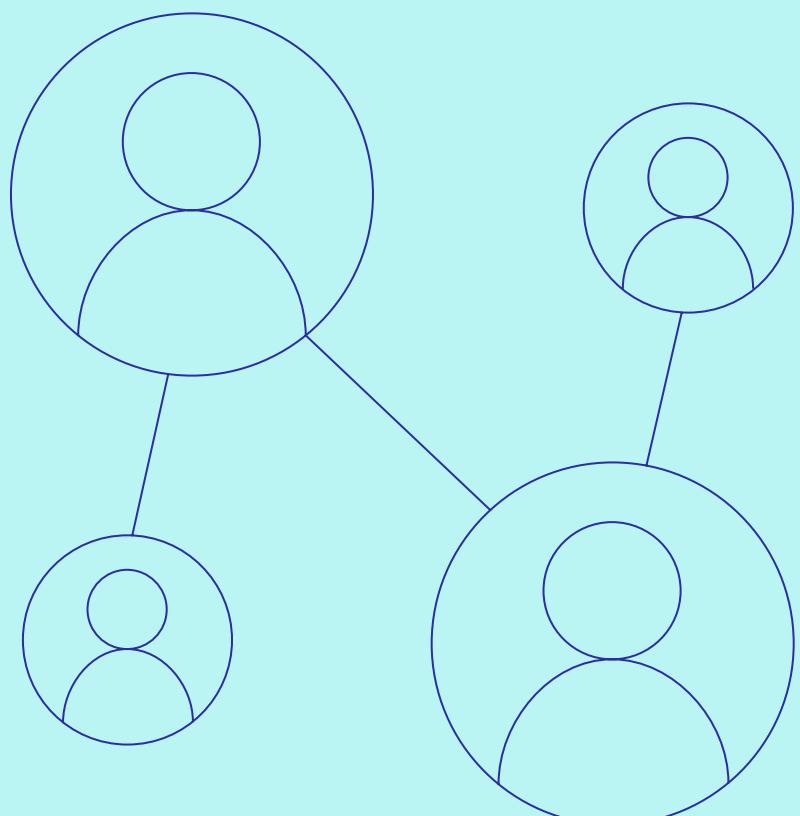
Amber Therapeutics

Adendra Therapeutics

Entia

Epsilogen

Mytos


Pangea Bio

Phaim Pharma

P.Happi

Vesalic

Vivan Therapeutics

All companies have been contacted to notify them of their inclusion in this report. Companies with an asterisk (*) next to their name have not shared direct feedback or revisions on their descriptions, and this information has been sourced from their websites and press releases

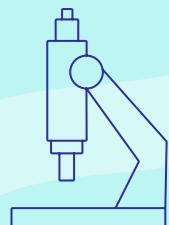
Amber Therapeutics*

amber-tx.com

Restoring normal physiology for women with urinary incontinence.

- Amber Therapeutics is a UK-based medtech company developing Amber-UI, the first fully implantable, adaptive neuromodulation therapy targeting the pudendal nerve to treat mixed urinary incontinence in women.
- Founders Aidan Crawley, Tim Denison, Stefan De Wachter and Charles Knowles combine expertise in finance, neuroengineering, clinical practice and surgery to tackle a longstanding challenge in women's health.

Key partnerships:


- Bioinduction limited partnered and was then acquired by Amber Therapeutics to utilise Picostim BDyNeuMo platform for deep brain stimulation.

Amber Therapeutics uses the Picostim DyNeuMo platform, enabling real-time, patient-specific stimulation to restore normal bladder function. In the AURA-2 first-in-human study, Amber-UI demonstrated strong safety and feasibility, with 80% of evaluable women achieving complete resolution of incontinence episodes six months post-implant.

The founding team includes Chief Engineer Tim Denison, from Oxford and MIT, Chief Scientist Stefan De Wachter, recognised as a global innovator in pelvic health and contributing to all major clinical pivotal trials in the past 20 years, and CEO Aidan Crawley, from Oxford Enterprises with a track record of growing unicorn companies including Addepar.

Founded	2021
Subsector	Medtech
Core tech	Women's health
Stage	Venture
Development Phase	First-in-human study
Employees	15
Investment raised	\$79m
HQ	Knowledge Quarter

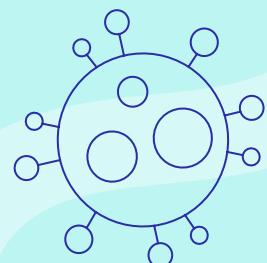
Adendra Therapeutics

adendratx.com

Immunogenicity: tuned.

- Adendra Therapeutics is developing novel treatments for cancer and autoimmune diseases by targeting dendritic cell biology to modulate immune responses.
- As a Francis Crick Institute spinout, co-founded by Caetano Reis e Sousa and Raj Mehta, Adendra combines cutting-edge immunological research with seasoned leadership to pioneer dendritic cell-targeted therapies.

Key partnerships:


- Francis Crick Institute.
- Spanish National Centre for Cardiovascular Research – CNIC.

Adendra's proprietary technology focuses on understanding how dendritic cells detect necrotic cells and translate that encounter into immune responses. By modulating these pathways, Adendra aims to develop monoclonal antibody-based therapies that enhance immune control in cancer or suppress inappropriate immune activation in autoimmune diseases.

Caetano Reis e Sousa's pioneering research in dendritic cell biology provides the scientific foundation, while Raj Mehta's experience in founding and leading companies like GammaDelta Therapeutics and Revitope Oncology brings strategic and operational leadership to the company.

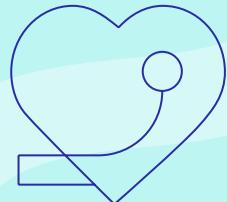
ADENDRA

Founded	2021
Subsector	Therapeutics
Core tech	Monoclonal antibodies
Stage	Seed
Development Phase	Preclinical
Employees	1
Investment raised	Undisclosed
HQ	Knowledge Quarter

Unlocking the full potential of cancer care with at-home blood monitoring.

- Entia have developed an at-home blood monitoring system providing real-time insights that facilitate personalised and proactive cancer care.
- Founded by Dr Toby Basey-Fisher, who had seen family members struggle with poorly personalised cancer therapy and founded Entia as an Imperial spinout to address this.

Key partnerships:


- Lloyds Clinical to integrate Entia's groundbreaking Liberty platform with specialist oncology nursing services.
- Pfizer UK commercial partnership to make virtual monitoring services available for metastatic breast cancer patients in the UK.
- NHS supporting better monitoring of cancer patients from the comfort of their homes.

Entia's flagship product, Liberty, is an innovative at-home blood monitoring solution designed to support cancer patients undergoing treatment. By enabling patients to perform their own blood tests, Liberty allows healthcare teams to remotely monitor and manage the hematological toxicity of cancer treatments, such as neutropenia, a common side effect that reduces immune system function and makes patients highly vulnerable to serious infections.

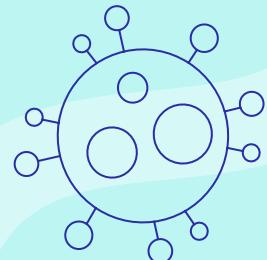
Liberty has been developed in collaboration with leading European cancer centres, such as The Christie and The Royal Marsden NHS Foundation Trust, and was evaluated through four major trials, involving more than 1,000 patients and five NHS centres. The liberty full blood count analyser is approved for use in the UK and following deployment across the country, 94% of patients would recommend Liberty to others.

entia

Founded	2015
Subsector	Medtech
Core tech	Diagnostics
Stage	Series A
Development Phase	Approved
Employees	34
Investment raised	\$31m
HQ	City of London

A clinical-stage company pioneering radically new antibody therapeutics in oncology.

- Epsilogen has unique and proprietary expertise in the discovery and development of IgE, IgA and IgG-based therapeutics, with each isotype possessing differentiated immune effector function.
- Epsilogen is building on founding work from Prof Sophia Karagiannis, a leading expert in IgE immunology at King's College London, and Prof Jeanette Leusen, a leading expert in IgA immunology at University Medical Centre Utrecht.


Key partnerships:

- Novartis led Epsilogen's £43.25m expanded series B financing in 2022.

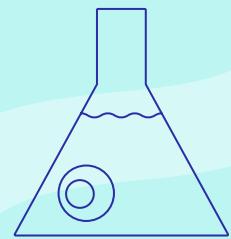
The distinct activity profiles of each isotype allow Epsilogen to select the most appropriate isotype for a given cancer. The company has also created a number of novel platforms based on its expertise with these isotypes, including bispecific IgE and IgEG antibodies, which have the potential to enhance antitumour activity. Epsilogen's lead product candidate, MOv18 IgE, is the first therapeutic IgE antibody to enter the clinic, and encouraging data from a completed Phase I trial found it to be safe and well tolerated with early signs of clinical activity. Epsilogen has initiated a Phase Ib trial in platinum-resistant ovarian cancer patients.

Epsilogen

Founded	2016
Subsector	Therapeutics
Core tech	Antibody therapeutics
Stage	Venture
Development Phase	Phase 1
Employees	24
Investment raised	£82.3m
HQ	Hammersmith

Enabling scalable and low cost production of patient doses.

- Mytos is revolutionising cell manufacturing by automating the production of human cells, enabling scalable and consistent cell therapy development.
- Founded by two 'Forbes 30 under 30' serial founders, engineers and Ycombinator alumni Ali Afshar and Ignacio Willats, Mytos' leadership combines expertise in engineering and enterprise sales to address critical bottlenecks in cell therapy manufacturing.


Key partnerships:

- Stemsight collaborated to automate production of retinal pigment epithelium cells.
- Rinri Therapeutics to scale production of cochlear cells.
- Novadip to automate the manufacturing of bone tissue.
- Aspen Neuroscience to automate stem cell production for Parkinson's disease therapy.

Mytos has developed the iDEM™ platform, a fully automated system that streamlines the complex process of human cell production, including imaging, passaging and media replenishment. This automation reduces human error, contamination risks and variability, ensuring consistent, high-quality cell outputs. The platform has demonstrated the ability to produce various cell types, such as beating heart cells from stem cells within 12 days, with remote monitoring capabilities.

The founding team's background in engineering and enterprise equips Mytos to bridge the gap between scientific innovation and practical application in the biotech industry. Their approach addresses the critical bottleneck in cell therapy manufacturing, enabling scalable production of human cells essential for advancing regenerative medicine.

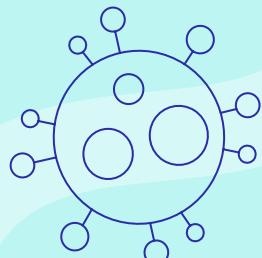
Mytos

Founded	2016
Subsector	Cell and gene therapy
Core tech	Manufacturing
Stage	Series A
Development Phase	N/A
Employees	35
Investment raised	\$24m
HQ	White City

Novel therapies for neurological diseases.

- Pangea Bio is developing novel therapies for neurological and mental health disorders.
- Founding team includes serial entrepreneurs Lars Wilde, John Boghossian, Manon Veraart, Julia Wilde and Thomas Pfeiffer.

Key partnerships:


- Kadence Bio is a spin-off company led by John Boghossian focussed on developing novel therapeutics to address areas of significant unmet need in sexual and mental health.
- Pangea Bio is backed by the Michael J. Fox Foundation, Alzheimer's Drug Discovery Foundation, OneMind and Innovate UK.

Pangea Bio's lead R&D programme focuses on activating the TrkB receptor pathway, which promotes neuronal survival, synaptic plasticity and neuroprotection. Dysfunction of the BDNF/TrkB pathway is a hallmark of disorders such as schizophrenia, depression, Alzheimer's disease, Parkinson's disease and glaucoma. Pangea Bio's lead asset OT-003 is on track to enter Phase I in early 2026.

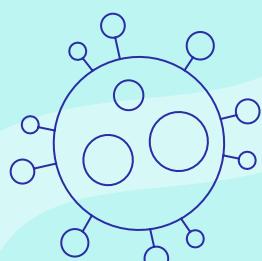
Pangea Bio's leadership brings a wealth of experience from successful ventures like COMPASS Pathways, ATAI Life Sciences and Quercis Pharma, combining expertise in drug development, business strategy and scientific innovation.

Founded	2021
Subsector	Therapeutics
Core tech	Small Molecule
Stage	Series A
Development Phase	Preclinical
Employees	11
Investment raised	£18m
HQ	Knowledge Quarter

To create a world where no one has to live with an autoimmune disease.

- Phaim Pharma is developing a pioneering therapeutic platform, Antigenic Immune Modulation (AIM), aimed at curing, improving, halting or preventing autoimmune diseases, with an initial focus on type 1 diabetes and discovery programmes in psoriasis and rheumatoid arthritis.
- Founded by Dr Nara Daubeney, a clinical ENT surgeon and researcher with a PhD background in immunology, her father Dr Tihamer Orban, a world-renowned immunologist specialising in type 1 diabetes, and Prof Piers Daubeney, professor of practice at Imperial College.

Phaim Pharma's AIM platform acts as a synthetic thymus, reprogramming the immune system to prevent autoimmunity by inducing antigen-specific regulatory T cells. The lead candidate, DMX4001, has demonstrated promising preclinical results in type 1 diabetes, including successful GMP manufacturing and validated assays.


Phaim Pharma's pipeline includes psoriasis, rheumatoid arthritis and multiple sclerosis. With a board comprising of KOLs in the world of pharma, life sciences and therapeutics spanning decades' worth of experience, Phaim is perfectly positioned to be transformational in this therapeutic area of high unmet need.

Dr Nara Daubeney's dual role, as a practising surgeon and honorary senior clinical lecturer at Barts NHS Trust and Queen Mary University London and founder of the medical services company CCHC alongside 10 year's C-suite experience in immunology research and clinical development of assets, brings invaluable clinical and commercial insight to Phaim's development programmes.

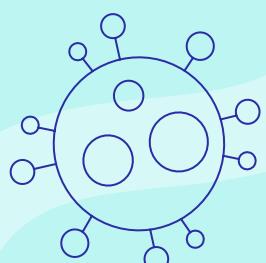
Prof Piers Daubeney brings more than 25 years of CEO and drug trial experience, as well as expertise in developing novel drugs to promote child health. Dr Orban had spent more than two decades focussing his research on type 1 diabetes at the Joslin Diabetes Centre and taught at Harvard Medical School, inspiring a new generation of doctors.

Founded	2014
Subsector	Therapeutics
Core tech	Autoimmunity
Stage	Seed/series A
Development Phase	Preclinical
Employees	6
Investment raised	\$2.8m
HQ	Southwest London

A next-gen microbiome serum that shields from bad bacteria in the intimate area helping to support a healthy intimate microbiome for women prone to UTIs, balanced imbalances, hormonal shifts such as pregnancy, or menopause.

- P.Happi® is a femtech company pioneering microbiome-protective solutions for women's intimate health.
- The company is the world's first company commercialising the natural bacterium *Bdellovibrio bacteriovorus* (B.Y.M.® 1405) to restore and maintain a healthy intimate microbiome.
- Founded by Dr Chiara Board, PhD Imperial, P.Happi is a company of female scientists, founded by a woman for women.

Key partnerships:


- Boots UK now stocks P.Happi®'s daily intimate serum.
- Health Innovation Network collaborated on research demonstrating the effectiveness of P.Happi®.

P.Happi®'s flagship product is a patented topical serum powered by B.Y.M.® 1405, a naturally occurring bacterium that forms a protective barrier in the intimate area, stopping harmful bacteria from disrupting the microbiome. This approach offers a non-antibiotic alternative to traditional treatments, addressing the growing concern of antimicrobial resistance.

P.Happi® has conducted clinical studies showing that 71% felt more protected and 78% noticed better results compared to traditional solutions and 93% of participants experienced moisturised intimate skin. The company's latest six-month study, funded by Innovate UK and conducted by the University of Reading and LiveUTIfree, has shown very promising results, which are expected to be published later this year. P.Happi® is now available in the UK and EU market (all 27 member states) and plans to establish a UK-based bio-manufacturing facility and partnerships to support its growth.

P.Happi®

Founded	2020
Subsector	Therapeutics
Core tech	Femtech
Stage	Venture
Development Phase	Marketed
Employees	5
Investment raised	£1.65m
HQ	White City

Breakthroughs in neurodegenerative diseases.

- Vesalic is developing innovative treatments for neurodegenerative diseases, leveraging advanced scientific research to address unmet medical needs.
- Founded by Valeria Ricotti, who also founded DiNAQOR, a gene therapy platform for heart disease.

Vesalic Ltd is committed to addressing the significant unmet medical needs in the treatment of neurodegenerative diseases, focussing on developing therapies that can slow or halt disease progression.

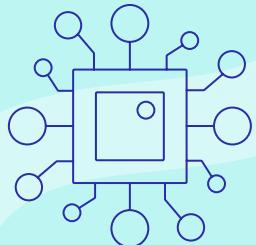
Vivan Therapeutics

vivantx.com

Personalised cancer clinical decision support powered by advanced drug screening and AI technology.

- Vivan offers personalised cancer therapy direction through a proprietary genomics-based drug screening platform and data set.
- Founder Laura Towart also founded Celmatix, a leading women's health company, and has raised \$151m in previous ventures.

Key partnerships:


- Technology licensed in partnership with Mount Sinai Medical Center.
- Mayo Clinic, Institute for Cancer Research, Bart's Cancer Research Institute, Innovate UK, European Innovation Council and Medical Research Council have developed partnerships.

A technology with heritage at Mount Sinai Medical Center New York, Vivan's novel ML AI platform for drug discovery and personalised cancer treatment is based on animal 'avatar' models of disease.

The company's TuMatch software offers personalised GI cancer treatment recommendations to private patients globally and is positioned to scale. Vivan's deep data set is ever expanding, leading to TuMatch for other cancer types, in development.

Founded	2018
Subsector	Digital health and AI
Core tech	Drug discovery
Stage	Seed
Development Phase	N/A
Employees	12
Investment raised	£4.44m
HQ	White City

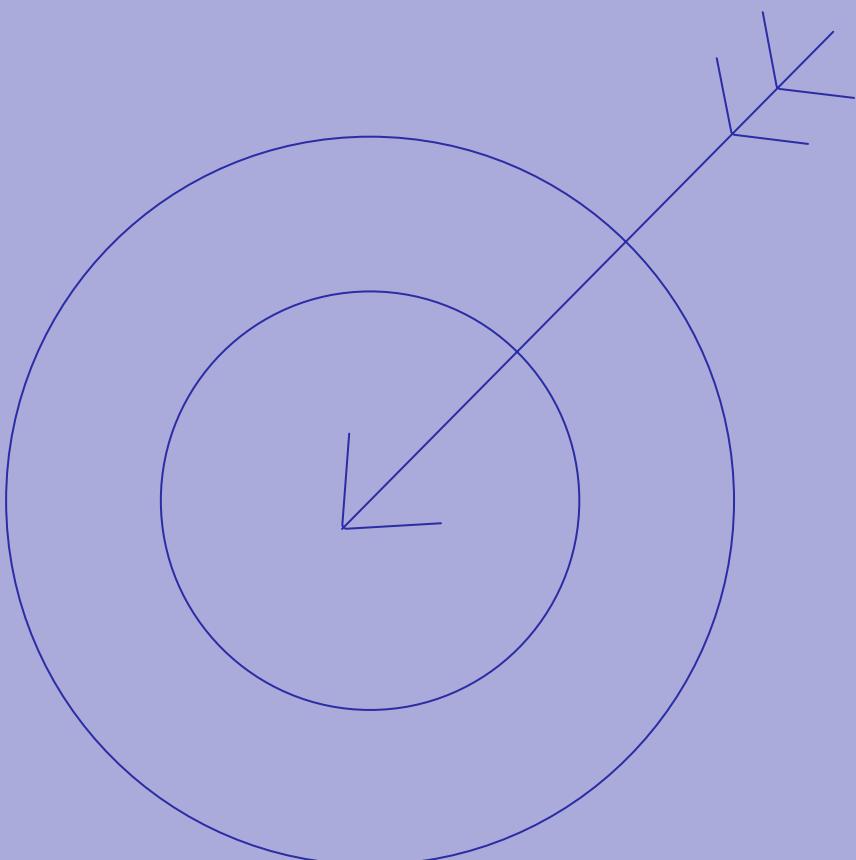
Challenging indications

Actimed Therapeutics

Axovia Therapeutics

Echopoint

Nilocas


Pulmocide

Silence Therapeutics

Verdiva Bio

Vicebio

30 Technology

All companies have been contacted to notify them of their inclusion in this report. Companies with an asterisk (*) next to their name have not shared direct feedback or revisions on their descriptions, and this information has been sourced from their websites and press releases

Actimed Therapeutics

actimedtherapeutics.com

Speciality pharma for muscle-wasting disorders including cancer cachexia, ALS and obesity-related muscle loss.

- Actimed Therapeutics is developing Anabolic/Catabolic Transforming Agents (ACTAs) to treat cancer cachexia, ALS, obesity-related muscle loss and other severe muscle wasting disorders.
- Founded by Professors Stefan Anker and Andrew Coats, two leading physicians and researchers in cachexia and heart failure with decades of academic, clinical and translational medicine experience, together with Yann Colardelle.

Key partnerships:

- Faraday Pharmaceuticals licensed Actimed's S-oxprenolol to development and commercialisation.

Cancer cachexia affects a high proportion of cancer patients, and currently no approved globally accepted drug exists to reverse or halt the muscle wasting. Muscle loss also complicates outcomes in ALS, obesity-treatment settings post-GLP-1 therapy and many chronic diseases. Actimed's lead asset seeks to fill this gap by acting via dual anabolic/catabolic modulation rather than single-pathway interventions.

Actimed's core therapeutic strategy uses ACTAs, which are small molecules that act on multiple pharmacological pathways involved in muscle wasting. ACTAs reduce catabolic signalling, enhance anabolic pathways, improve lean body mass, strength and potentially survival. "S-pindolol benzoate" is a refined form of espindolol, designed to deliver more consistent pharmacokinetics and pharmacodynamics.

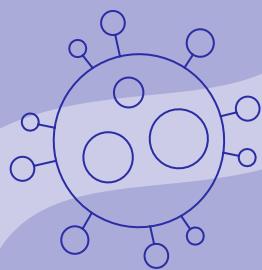
Founded	2016
Subsector	Therapeutics
Core tech	Small molecules
Stage	Venture
Development Phase	Phase IIb/III
Employees	17
Investment raised	\$27.9m
HQ	West London

Axovia Therapeutics

axoviatherapeutics

Unlocking new therapies for genetic forms of obesity and blindness.

- Axovia Therapeutics is developing AAV9-based gene replacement therapies for ciliopathies, targeting both retinal dystrophy (blindness) and obesity.
- Founded by Prof Philip Beales, a leading geneticist who has spent decades diagnosing, researching and caring for Bardet-Biedl patients, together with Dr Victor Hernandez from Brunel University.


Key partnerships:

- Rhythm Pharmaceuticals and Axovia Therapeutics have a joint research collaboration in Bardet-Biedl Syndrome (BBS).
- Viralgen and Axovia partner to manufacture an investigational gene therapy for Retinal Dystrophy in BBS patients.
- Collaboration with Charles River – their expertise in plasmid DNA production to support Axovia Therapeutics' mission of developing potentially transformative therapies for ciliopathies.

Bardet-Biedl Syndrome is a ciliopathy with onset of retinal degeneration in childhood, blindness often before age 20, severe obesity and other systemic manifestations. There are currently no disease-modifying treatments, and early delivery is critical to prevent irreversible vision loss. Axovia's technology uses AAV9-based gene-replacement therapy to deliver a codon-optimised BBS1 gene into key tissues for patients with biallelic BBS1 mutations. The therapy aims to halt photoreceptor cell death and retinal degeneration, preserving vision, and in later programmes to address hyperphagia and obesity driven by CNS delivery.

Axovia have achieved FDA Orphan Drug Designation and Rare Pediatric Disease Designation for AXV-101 and plan the first-in-human Phase I/II study for mid-2025. Preclinical data demonstrates that AXV-101 halts photoreceptor and outer nuclear layer degeneration in a dose-dependent manner.

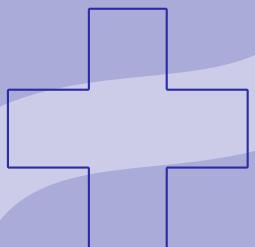
Founded	2023
Subsector	Advanced therapies
Core tech	Gene therapy
Stage	Seed
Development Phase	First-in-human
Employees	10
Investment raised	\$6.34m
HQ	Knowledge Quarter

Echopoint Medical

echopointmedical.com

Providing full coronary physiology in a matter of minutes. Better decisions. Better care.

- Echopoint is developing the iKOr™ microcatheter system, a fibre-optic sensor-based diagnostic tool to measure coronary flow and related physiological metrics in patients with suspected ischemia but non-obstructive coronary arteries (INOCA).
- Echopoint is led by Antony Odell, medtech entrepreneur, ex-CEO of Tissue Regenix, Dr Adrien Desjardins and Dr Malcolm Finlay.


Many patients with chest pain do not have significant arterial blockages visible on angiography but have coronary microvascular dysfunction or vasospasm (INOCA), which is underdiagnosed and undertreated. Current diagnostics are often invasive, complex or inconclusive.

The iKOr microcatheter system is a thin catheter equipped with fibre-optic sensors that measure coronary pressure, flow and temperature. It is designed to quantify coronary physiology including microvascular and vasospastic dysfunction in a minimally invasive way, enabling clinicians to distinguish between patients who would benefit from stents and those who have non-obstructive disease and might be managed medically.

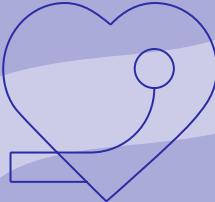
Echopoint aims to simplify, speed up and improve the accuracy of coronary physiology assessment, especially for patients who are misdiagnosed or subject to unnecessary procedures.

Echopoint Medical

Founded	2017
Subsector	MedTech
Core tech	Surgical
Stage	Growth
Development Phase	N/A
Employees	19
Investment raised	£8.65m
HQ	Knowledge Quarter

Nilocas

A medical device to revolutionise detection of coronary artery disease.


- Nilocas is developing a non-invasive patch device that captures chest sounds and skin motion signals to detect coronary artery disease (CAD), aiming to allow earlier, simpler and more accessible diagnosis outside of hospital settings.
- Led by Prof Steve Greenwald, Professor of Cardiovascular Mechanics, Centre for Cell Biology and Cutaneous Research).

Nilocas is developing a wearable patch-based diagnostic sensor placed on the chest, which captures both acoustic signals and mechanical skin movements associated with disrupted blood flow in coronary arteries narrowed by atherosclerosis. It then applies machine learning and signal analysis to these inputs to detect CAD, potentially in less than five minutes.

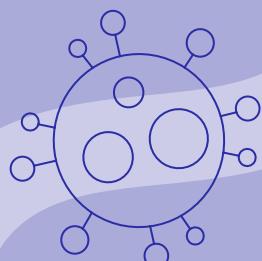
Existing diagnostics for CAD (CT angiography, invasive angiograms) are costly, use ionizing radiation, require specialist equipment and personnel, and carry procedural risks. Nilocas aims to provide a low-cost, non-invasive, rapid screening tool to better triage who needs more advanced imaging.

Founded	2023
Subsector	Medtech
Core tech	Diagnostics
Stage	Seed
Development Phase	Preclinical
Employees	4
Investment raised	>£300k
HQ	Whitechapel

Pulmocide*

pulmocide.com

Developing targeted therapies for serious respiratory diseases.


- Pulmocide is developing inhaled medicines to treat and prevent difficult respiratory fungal infections, especially invasive pulmonary aspergillosis, with high lung exposure and limited systemic toxicity.
- Cofounded by Dr Peter Strong, Dr Garth Rapeport, Dr Kazuhiro Ito and Dr John Murray, Pulmocide's founding team combines deep expertise in respiratory biology, inhaled drug design, fungal and viral infections, with prior success in related ventures like Respivert.

Pulmocide's lead asset opelconazole (PC945) is a novel inhaled azole antifungal designed to deliver high concentrations in the lung while minimising systemic exposure, to treat invasive pulmonary aspergillosis (IPA). IPA and related Aspergillus lung diseases have high morbidity and mortality, and existing systemic treatments are limited by efficacy, side effects, resistance and poor lung penetration. Pulmocide's inhaled route is intended to improve efficacy, reduce toxicities and drug-drug interactions typical of systemic antifungals.

Pulmocide has demonstrated tolerability and clinical signals in UK Special Needs use, and is currently in Phase III (OPERA-T) for treatment of IPA in patients not responding to standard antifungals. Opelconazole has gained Orphan Drug, Fast Track and Qualified Infectious Disease Product designations in the US, and orphan drug designation in the EU.

Founded	2007
Subsector	Therapeutics
Core tech	Novel formulation
Stage	Venture
Development Phase	Phase III
Employees	53
Investment raised	£140m
HQ	Knowledge Quarter

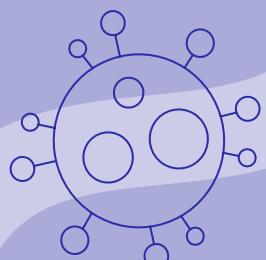
Silence Therapeutics

silence-therapeutics.com

Transforming people's lives by silencing diseases through precision engineered medicines.

- Silence Therapeutics is a global clinical-stage biopharmaceutical company developing novel short interfering RNA (siRNA) therapies designed to silence genes that cause disease.
- The company is led by Craig Tooman, President and CEO, and supported by a leadership team including Dr Steve Romano, Chief R&D Officer, bringing together decades of experience in the biopharmaceutical industry.

Key partnerships:


- AstraZeneca is collaborating with Silence Therapeutics on an undisclosed programme in Phase I development. This is a multi-target collaboration to develop siRNA therapeutics based on Silence's mRNA GOLD platform for cardiovascular, renal, metabolic and respiratory diseases.

Silence's proprietary mRNA GOLD platform has produced multiple promising clinical programmes and a diverse early-stage pipeline aiming to address areas of high unmet medical need. This approach harnesses natural biological process of RNA interference (RNAi). Each siRNA is intentionally designed to only bind to the target messenger RNA (mRNA), reducing potential for off-target effects, and the approach is durable yet reversible as siRNA therapies can be administered infrequently without permanently altering the gene. siRNA is well validated, and there is a higher probability of success for early-stage GalNAc siRNA programmes once in the clinic compared to industry average.

Key clinical programmes include Divesiran, a first-in-class siRNA in Phase II development for polycythemia vera, a rare blood cancer with significant unmet needs, Zerlasiran, a Phase III ready asset for elevated lipoprotein(a) (Lp(a)), a key genetic driver of cardiovascular disease, and a third undisclosed programme in Phase I development under the AstraZeneca collaboration. The company is headquartered in London, with research labs in Berlin and a corporate office in Hoboken, New Jersey. Silence trades on the NASDAQ stock market under the symbol SLN.

Founded	1994
Subsector	Advanced therapies
Core tech	RNAi
Stage	IPO
Development Phase	Phase III
Employees	114
Investment raised	IPO \$250m
HQ	Hammersmith

Verdiva Bio

verdivabio.com

Transforming lives by accelerating innovation in cardiometabolic health.

- Verdiva Bio is a clinical-stage biopharma company developing next-generation oral and injectable therapies designed to potentially help people living with obesity and cardiometabolic disorders achieve better long-term outcome via more patient-friendly therapeutic options.
- Led by a team of proven drug developers and company builders, several of whom worked together at previous companies, including Aiolos Bio and Gyroscope Therapeutics.

Key partnerships:

- Sciwind Biosciences licensed a portfolio of cardiometabolic disease assets to Verdiva in 2024 for development and commercialisation rights outside Greater China and South Korea.

Verdiva Bio is developing a flexible and modular portfolio of potentially once-weekly oral therapies, with the aim of providing accessible therapeutics to people living with obesity and cardiometabolic disorders. Its lead investigational programmes, VRB-101, a once-weekly oral GLP-1 receptor agonist which has completed Phase I, and VRB-103, a once-weekly oral amylin analog, provide data that highlights the potential of once-weekly dosing, both as standalone therapies and in combination.

Next-generation respiratory virus vaccines using the Molecular Clamp technology.

- Vicebio is developing multivalent, liquid, non-mRNA vaccines against respiratory viruses using its proprietary “Molecular Clamp” platform to stabilise viral glycoproteins in their prefusion form for better immunogenicity and manufacturability.
- Founded by Medicxi, Vicebio is led by Dr Emmanuel Hanon, a vaccine R&D leader formerly at GSK, together with scientific founders from the University of Queensland who invented the Molecular Clamp technology.

Key partnerships:

- UniQuest (University of Queensland) licensed the Molecular Clamp technology to ViceBio with exclusive rights to apply it in vaccine candidates.
- Sanofi entered into an agreement to acquire ViceBio for up to \$1.6bn.

Respiratory viruses like respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) cause significant morbidity and mortality especially in older adults, infants and immunocompromised people. There are limited vaccines, especially for multivalent combinations, and many existing vaccines have storage, production or formulation challenges, with some requiring cold chain or reconstitution.

Vicebio's Molecular Clamp platform is a protein-engineering approach that stabilises viral glycoproteins in their prefusion conformation, which is known to expose epitopes that elicit stronger neutralising antibody responses. The Clamp is a patented “clamp tag” appended to antigens to enforce their structural integrity, which helps vaccine candidates retain immunogenicity, improve stability and be formulated as fully liquid vaccines that are easier to manufacture and distribute.

Founded	2018
Subsector	Therapeutics
Core tech	Vaccines
Stage	Venture
Development Phase	Phase I
Employees	22
Investment raised	£89.9m
HQ	Knowledge Quarter

30 Technology*

30.technology

Delivering the full potential of therapeutic nitric oxide.

- 30 Technology is developing a proprietary nitric oxide (NO)-generating platform of inhaled, topical, gel and powder therapy for antimicrobial, respiratory, rare disease and ophthalmology applications, with several respiratory candidates already in Phase II clinical trials.
- Founded by Prof Chris Wood, Honorary Professor at Imperial College London, expert in NO biology and surgery, and initially supported by Scottish Enterprise.

Key partnerships:

- Convatex Group bought 30 Technology's wound-care NO platform in a deal worth up to £176m.

Nitric oxide is a natural molecule with antimicrobial, antiviral, antifungal and immunomodulatory effects. 30 Technology's platform can safely generate sustained, high concentrations of nitric oxide in inhaled solution, gel and dry powder forms. This flexibility allows localised delivery directly to sites of infection, overcoming limitations of systemic antibiotics, resistance and poor tissue penetration.

Multi-drug resistant infections where nitric oxide deficiency or dysfunction is implicated are a growing unmet need spanning respiratory disease, wound and skin infection with biofilms, oral and ophthalmic infections, and rare diseases.

30 TECHNOLOGY	
Founded	2024
Subsector	Therapeutics
Core tech	Small molecule
Stage	Venture
Development Phase	Phase I/IIa
Employees	19
Investment raised	£37.3m
HQ	Knowledge Quarter

Founded in London and growing across the UK

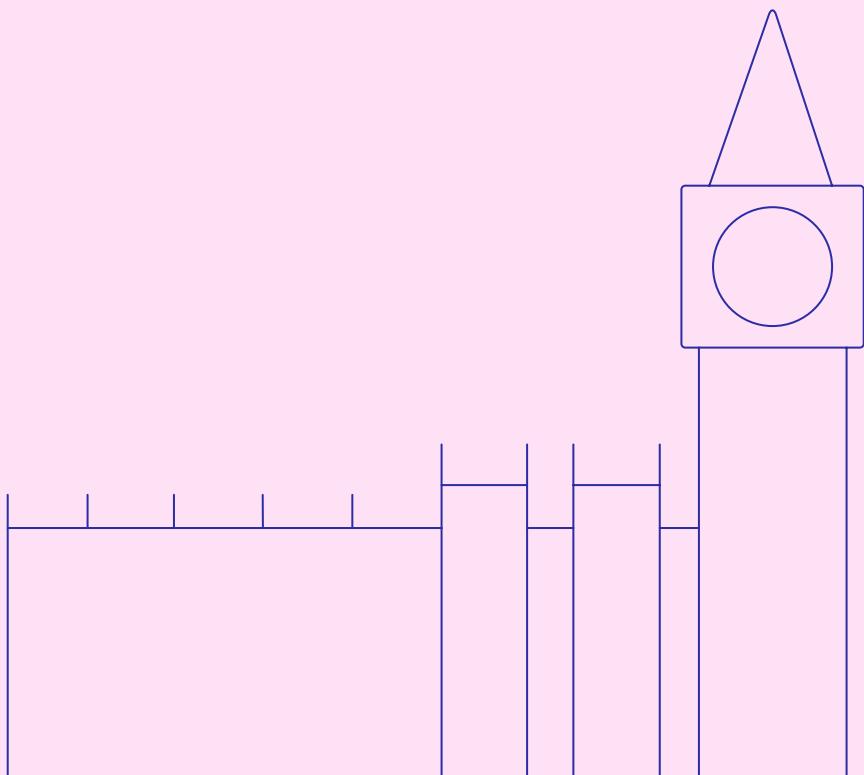
Akamis Bio

Apollo Therapeutics

Charco Neurotech

Epilepsygtx

MyCardium AI


Pheon Therapeutics

Revolo Biotherapeutics

Signatur Bioscience

Spur Therapeutics

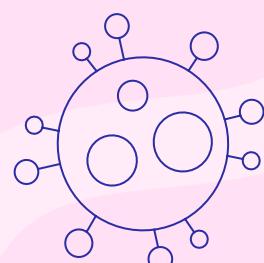
ViaNautis

All companies have been contacted to notify them of their inclusion in this report. Companies with an asterisk (*) next to their name have not shared direct feedback or revisions on their descriptions, and this information has been sourced from their websites and press releases

Tumour-specific immuno-gene therapy platform to deliver novel immunotherapeutic proteins, biomolecules and transgene combinations to treat solid tumours.

- Akamis Bio is developing T-SIGN® viral vector gene therapies that home to solid epithelial tumours and express immunostimulatory payloads including CD40 agonists to reshape the tumour microenvironment.
- An Imperial spinout, led by CEO Dr Howard Davis, Akamis Bio's leadership includes veterans such as Dr Oliver Rosen (CMO), Dr Peter Kosa (CBO) and Dr Samantha Bailey-Bucktrout (Head of Research), who bring deep experience in immuno-oncology, gene therapy and biologics development.

Key partnerships:


- Xuanzhu Biopharma have licensed rights to Akamis' lead candidate.
- Parker Institute for Cancer Immunotherapy and the Cancer Research Institute have collaborated on clinical trials combining Akamis' lead candidate with chemotherapy and checkpoint inhibitors.

Akamis Bio's uses a chimeric group B adenovirus that has been evolved to selectively home to and replicate in solid epithelial-derived tumours following intravenous administration. Once in the tumour, the vector drives the expression of encoded transgenes to stimulate immune activation locally, turning tumour cells into "drug factories" and reprogramming the tumour microenvironment.

This approach enables tumour penetration and avoids off-target toxicity. First-in-human data shows proof-of-mechanism with tumour selective delivery and dose-dependent cytokine effects.

Founded	2006
Subsector	Advanced therapies
Core tech	Gene therapy
Stage	Venture
Development Phase	Phase Ib
Employees	37
Investment raised	£108m
HQ	Oxford

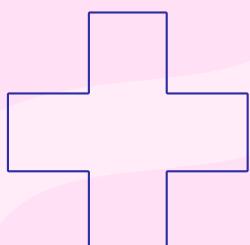
Apollo Therapeutics*

apollotx.com

Translating breakthroughs in biology and basic medical research into innovative new medicines.

- Apollo Therapeutics partners with leading academic institutions to identify promising early scientific discoveries and accelerate them into clinical-stage therapeutics, with more than 20 active programmes and several entering clinical development.
- Apollo Therapeutics is a joint venture by Cambridge, UCL and Imperial College together with pharmaceutical giants AstraZeneca, GSK and Johnson & Johnson. Apollo blends deep academic discovery with industrial drug development expertise to move early academic insight rapidly toward medicine.

Key partnerships:


- The University of Oxford will gain access to therapeutic development expertise and programme funding, while Apollo will identify and assess novel, validated therapeutic targets from Oxford's researchers for potential new medicines.
- Collaboration with The Institute of Cancer Research on research programmes to rapidly and efficiently progress drugs with the greatest promise through preclinical and clinical development.
- Collaboration with King's College London with a focus on developing novel therapeutics for patients across multiple disease areas.

Apollo's model is centred around a portfolio-based R&D platform and maintains many discovery programmes across oncology, inflammatory diseases, rare diseases and metabolism, with a core philosophy of de-risking early with rigorous biological validation and collaboration with academic institutions.

Many academic discoveries never make it beyond early validation. There is a gap in turning high-quality biology into medicines efficiently, which Apollo seeks to bridge by providing industrial drug discovery, development, programmatic leadership, funding and partnering.

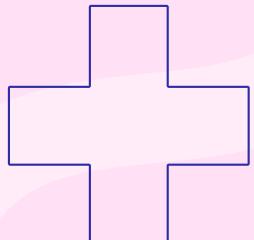
Founded	2021
Subsector	Therapeutics
Core tech	Agnostic
Stage	Venture
Development Phase	Phase II
Employees	60
Investment raised	£248m
HQ	Cambridge

Charco Neurotech

charconeurotech.com

Bringing back smiles for people with Parkinson's.

- Charco Neurotech has developed a wearable, non-invasive CUE Device which uses focused vibrotactile stimulation and rhythmic cueing to alleviate motor symptoms of Parkinson's disease, to reduce fall risk and improve quality of life.
- Founded by an industrial and interaction designer with training at Imperial College London and the Royal College of Art and a medical doctor from Cambridge.


Key partnerships:

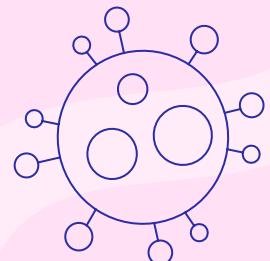
- Queen Mary University of London has collaborated to test and optimise device settings through a Knowledge Transfer Partnership that has delivered robust clinical data to support regulatory clearance and access.

Charco's device is a wearable stimulator worn on the sternum which delivers high-frequency vibrotactile stimulation plus rhythmic 'cueing' to modulate the peripheral sensory system to improve motor signal processing and assist movement initiation, reducing symptoms like freezing of gait, stiffness and slowness in people with Parkinson's. The device can be paired with a companion app allowing customisation of stimulation parameters and symptom tracking.

Founded	2019
Subsector	Medtech
Core tech	Device
Stage	Venture
Development Phase	N/A
Employees	15
Investment raised	£12.5m
HQ	Cambridge

Providing seizure freedom for patients with focal refractory epilepsy.

- EpilepsyGTx is developing a gene therapy (EPY201) delivered directly to the seizure focus, with the aim of making patients with focal refractory epilepsy seizure-free.
- Led by CEO Nicolas Koebel, formerly at GSK and Orchard Therapeutics, with CSO Prof Dimitri Kullmann, UCL neurologist, expert in synaptic transmission and cortical excitability.


EpilepsyGTx's lead programme EPY201 is an investigational gene therapy that uses an adeno-associated virus 9 (AAV9) vector to deliver an engineered Kv1.1 potassium channel under a CAMK2A promoter, directly into the seizure focus via intraparenchymal administration. The CAMK2A promoter biases expression preferentially to excitatory neurons, thereby dampening hyperexcitability selectively without broad suppression of neural activity.

Focal refractory epilepsy (FRE) refers to seizures originating in a localised brain region that do not respond to two or more antiseizure medications, affecting an estimated two million patients in the US, UK and EU combined.

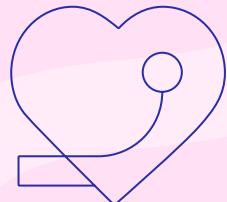
Current treatment options are limited: surgery (resective surgery and laser ablation) can be effective but involves the destruction of brain tissue; antiseizure medicines are largely ineffective in FRE and associated with tolerability and safety issues. EpilepsyGTx aims to offer a one-time localised gene therapy to reduce seizure frequency and achieve seizure freedom.

EPILEPSY GTX

Founded	2021
Subsector	Advanced therapies
Core tech	Gene therapy
Stage	Seed
Development Phase	Preclinical
Employees	2
Investment raised	£7.5m
HQ	Kent

MyCardium AI*

mycardium.com


Revolutionising cardiac MRI with FDA 510(k)-cleared and CE Class IIb-cleared analysis software, enhancing speed, accuracy and precision.

- MyCardium AI provides clinician-led AI tools for cardiac MRI and echocardiography to automate and improve measurement accuracy, reduce variability and speed up diagnosis in cardiovascular imaging.
- Founded by Prof Mark Westwood, Prof James Moon and Prof Charlotte Manisty, MyCardium AI's leadership combines world-leading academic expertise in cardiac imaging, MRI physics and clinical cardiology.

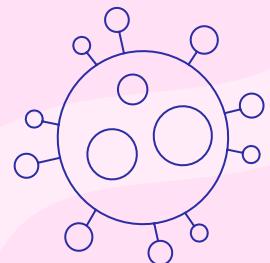
Key partnerships:

- NHS Trusts and multiple UK cardiac magnetic resonance research centres have established lab services and partnerships with Mycardium AI.

MyCardium's technology leverages deep learning to analyse cardiac MRI and echocardiography images, extracting quantitative measures with high precision and consistency, reducing human variability. Cardiac imaging metrics are critically important for patient diagnosis, but current manual or semi-automated analysis is time-consuming, inconsistent and costly. Improving speed and accuracy in these measurements means better diagnosis, fewer errors, better patient outcomes and lower healthcare cost.

Founded	2015
Subsector	Medtech
Core tech	Diagnostics
Stage	Venture
Development Phase	FDA 510(k) clearance CE Class IIb marking
Employees	35
Investment raised	£3.5m
HQ	Liverpool

Pheon Therapeutics


pheontx.com

Next-generation ADCs for hard-to-treat solid tumours.

- Pheon Therapeutics is developing a pipeline of differentiated Antibody-Drug Conjugates (ADCs) aimed at solid tumours, using novel targets and novel linker-payload combinations.
- Founded by Paul Jackson, VP R&D and Prof David Thurston (previously co-founder of Spirogen) as a King's College London spinout. Currently led by CEO Cyrus Mozayeni who has co-founded and led several biotech companies.

Pheon's lead programme is in Phase I and targets a novel antigen that is overexpressed in multiple solid tumours. Pheon Therapeutics aims to overcome the challenges of ADCs with low selectivity, poor tolerability and limited tumour penetration with better targets, optimised linker-payloads and improved therapeutic windows.

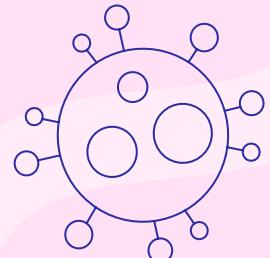
Founded	2015
Subsector	Therapeutics
Core tech	ADCs
Stage	Venture
Development Phase	Phase 1
Employees	15
Investment raised	£150m
HQ	Hertfordshire

Revolo Biotherapeutics*

revolobio.com

Revolutionary therapies designed for the patient.

- Revolo Biotherapeutics is a biotech company developing immune-resetting protein and peptide therapeutics aimed at autoimmune and allergic diseases by addressing the upstream drivers of chronic inflammation.
- Led by CEO Jonathan Rigby, who has around 30 years of experience founding and leading biopharma companies including SteadyMed and Zogenix.


Key partnerships:

- Partnership agreement with Northway Biotech to manufacture its binding immuno-regulatory protein, '1805, to support Phase II trials in Rheumatoid Arthritis and Uveitis.

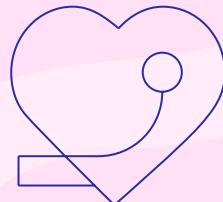
Revolo Biotherapeutics' main assets include a modified analogue of an endogenous immune regulatory protein BiP designed to "reset" immune homeostasis, and a peptide derived from a natural immune-regulatory protein, with a mechanism that modulates upstream aspects of immune activation.

Many autoimmune and allergic conditions are managed through chronic immune suppression which comes with safety risks, and many patients do not achieve long-term remission. Revolo aims to fill that gap with disease-agnostic upstream modulation.

REVOLO
BIOTHERAPEUTICS

Founded	2011
Subsector	Therapeutics
Core tech	Peptide
Stage	Venture
Development Phase	Phase II
Employees	20
Investment raised	£76.5m
HQ	Cambridge

Expanding PCR testing to a whole new range of conditions.


- Signatur Biosciences is developing the PCRchitectur platform, which enables detection of multi-biomarker gene expression signatures in a single qPCR reaction, making complex disease diagnostics faster, cheaper and deployable on existing PCR machines.
- Founded by Celestin de Wergifosse, Dr John Goertz and Prof Dame Molly Stevens, the team combines strong academic pedigree from Imperial and Oxford University to push precision diagnostics into more accessible, local settings.

Key partnerships:

- Backed by Y Combinator.

Signatur Biosciences is making precision diagnostics more accessible, starting with breast cancer prognosis testing for women worldwide. PCRchitectur™, Signatur's proprietary technology, is designed to overcome current limitations by detecting an entire gene expression panel in a simple qPCR reaction. The one-reaction solution works on standard instruments (qPCR machines) by embedding interpretative logic directly into the reaction. Instead of measuring many RNA transcripts separately then combining them, the reaction is engineered so that a "healthy pattern" versus a "disease pattern" triggers different fluorescent readouts in a single well.

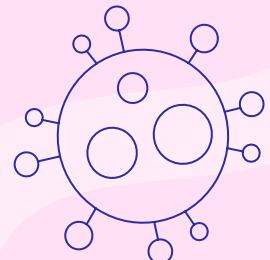
Traditional diagnostic tests used to guide therapy are slow and expensive because they must be run in complex centralised facilities. Signatur's tests are designed to integrate seamlessly with standard instruments and workflows already present in clinical laboratories. The company's first product, OncoSignatur Breast, combines the current gold-standard biomarkers with its proprietary platform, enabling local hospital laboratories to deliver results in hours instead of weeks and at half the cost. Signatur leverages its technology to overcome current technical limitations and build a globally accessible decentralised precision diagnostics.

Founded	2022
Subsector	Medtech
Core tech	Diagnostics
Stage	Seed
Development Phase	N/A
Employees	10
Investment raised	£7.4m
HQ	London

Spur Therapeutics

spurtherapeutics.com

Toward the next generation of gene therapy.


- Spur Therapeutics is a clinical-stage biotech company focussed on developing life-changing gene therapies for debilitating chronic diseases, with a Phase III-ready gene therapy programme for Gaucher disease and a preclinical gene therapy programme for Parkinson's disease.
- Spur was formed through the merger of Freeline Therapeutics and SwanBio Therapeutics, combining expertise in gene therapy to create highly optimised gene therapy candidates and pursue a bold research strategy to move beyond rare diseases into more prevalent conditions.

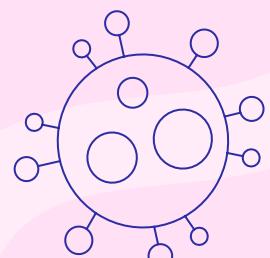
Spur's lead programme, avigbagene parvec (FLT201), is an adeno-associated virus (AAV) gene therapy candidate for Gaucher disease designed to deliver a rationally engineered, more stable version of the deficient enzyme, with the aim of halting or reversing disease progression and setting a new standard of care. FLT201 demonstrated positive results in the Phase I/II GALILEO-1 trial for Gaucher disease, showing improvements in key biomarkers and clinical assessments and a favourable safety profile. Spur plans to advance the programme into a Phase III trial in the first half of 2026.

Building on its work in Gaucher disease, Spur is leveraging the same rationally engineered enzyme to target an aggressive form of Parkinson's disease linked to mutations in the same gene implicated in Gaucher disease.

SPUR THERAPEUTICS

Founded	2024
Subsector	Advanced therapies
Core tech	Gene therapy
Stage	Venture
Development Phase	Phase I/II
Employees	40
Investment raised	£63m
HQ	Stevenage

Pioneering the next generation of genetic nanomedicines.


- ViaNautis is developing its proprietary polyNaut® nanovesicle platform for precise delivery of genetic therapeutics across hard-to-penetrate biological barriers, to enable treatment of CNS, respiratory and other severe diseases.
- Founded as a spinout from UCL by Dr Francesca Crawford, Dr Denis Cecchin and Prof Giuseppe Battaglia, inventor of polyNaut®.

Key partnerships:

- Eli Lilly signed a multi-year collaboration agreement to use the polyNaut® platform for delivery of genetic medicines to priority tissues.

The polyNaut® platform is a nano-engineered polymer and nanovesicle system. It uses advanced polymer materials and in silico screening to design nanovesicles that can encapsulate a variety of genetic cargoes, target specific cell types and deliver cargo intracellularly. The nanovesicles are non-viral, stable and support redosing.

Many genetic medicines are limited by lack of safe, efficient delivery vehicles. Viral vectors have size and immunogenicity constraints, and lipid nanoparticle (LNP) systems have issues crossing certain barriers, targeting and repeated dosing. ViaNautis aims to provide a platform that enables delivery with specificity and lower risk.

Founded	2018
Subsector	Advanced therapies
Core tech	Nanovesicles
Stage	Venture
Development Phase	N/A
Employees	35
Investment raised	£22.8m
HQ	Cambridge

Summary

MedCity's Life Sciences Companies to Watch 2025 provides a snapshot of some of the fastest-growing, most innovative and most impactful companies addressing big health and research challenges in London in 2025, as identified by MedCity's research and panel of experts.

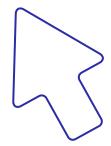
London continues to be home to one of the strongest and most vibrant life sciences ecosystems in the world, with [4]:

More specialist hospitals than anywhere else in Europe. [4]

75,000 university students enrolled in life sciences each year. [4]

More than **500** venture capital investors with life science experience in London. [4]

Three of the top 15 universities in clinical and health research. [4]


By 2032, more than 6.2 million sq ft of new laboratory and office space dedicated to life sciences will be completed, which could support 80,000 direct jobs [4]. This expansion, combined with London's existing and emerging talent pool, is set to attract a new wave of innovative companies to watch in the coming years.

Learn more about London's life sciences scene at lifescience.london and discover why London is the best place for you to bring future healthcare solutions to patients today.

If you would like to know more about what we do and how we work, please contact us or send us a message at:

medcitycomms@londonandpartners.com
medcityhq.com

References

1. MedCity. Life Sciences Global Cities Comparison Report 2024. (2024). Available at: <https://medcityhq.com/resource/life-sciences-global-cities-comparison-report-2024/>
2. Dealroom. Data accessed August 2025.
3. Gov.uk. Bioscience and Health Technology Sector Statistics 2021 to 2022. (2024). Available at: <https://www.gov.uk/government/statistics/bioscience-and-health-technology-sector-statistics-2021-to-2022/bioscience-and-health-technology-sector-statistics-2021-to-2022#variation-across-the-uk>
4. MedCity. London Life Science Offer. (2025). Available at: <https://lifescience.london/>
5. Callaway, E. UK scientists gain license to edit genes in human embryos. Nature 530, 18 (2016). Available at: <https://www.nature.com/articles/nature.2016.19270>
6. Takeda. Takeda to Acquire GammaDelta Therapeutics to Accelerate Development of Allogeneic γδT Cell Therapies Addressing Solid Tumors. (2021). Available at: <https://www.takeda.com/newsroom/newsreleases/2021/takeda-to-acquire-gammadelta-therapeutics-to-accelerate-development-of-allogeneic--cell-therapies-addressing-solid-tumors/>
7. Autolus. Company website. (2025). Available at: <https://www.autolus.com/>
8. UK BioIndustry Association (BIA). UK Biotech Holds Firm in the First Half of 2025, BIA Report Finds. (2025). Available at: <https://www.bioindustry.org/resource/uk-biotech-holds-firm-in-the-first-half-of-2025-bia-report-finds.html>
9. Gov.uk. 10 Year Health Plan for England: Fit for the Future. (2025). Available at: <https://www.gov.uk/government/publications/10-year-health-plan-for-england-fit-for-the-future>
10. Gov.uk. Life Sciences Sector Plan. (2025). Available at: <https://www.gov.uk/government/publications/life-sciences-sector-plan>

MEDCITY
LONDON

LONDON
& PARTNERS